Einzelnen Beitrag anzeigen
  #2  
Alt 14.09.10, 15:23
Benutzerbild von EMI
EMI EMI ist offline
Singularität
 
Registriert seit: 12.05.2008
Ort: Dorsten
Beitr?ge: 2.564
Standard AW: Frage zur Formel der Unschärferelation

Zitat:
Zitat von Varg Beitrag anzeigen
Ich habe eine Frage zur Unschärferelation, genau genommen zur Formel.
1. Frage: Ist die bei Wiki gefundene Formel korrekt? Was drückt sie aus?
Willkommen Varg,

schau mal hier:
Zitat:
Zitat von EMI
Die klassische Physik kennt zwei Arten der Bewegung. Die Lageveränderung von Körpern auf bestimmten Bahnen und die Ausbreitung von Wellen.
Ungeachtet des verschiedenen Wesens dieser Bewegungen stimmen die Gesetze, denen beide gehorchen, manchmal völlig überein.
Das gilt für die Fälle, in denen die Wellenlänge klein genug ist im Vergleich zu den Abmessungen des Raumes, in dem sich der Wellenvorgang ausbreitet.
Bei den Elementarteilchen (z.B. Elektronen) wissen wir allerdings nicht im voraus welche Maße als klein anzusehen sind.
Es hat sich gezeigt, dass, wenn ein Elektronenstrahl durch ein Beugungsgitter hindurchgeht, die gleichen Beugungseffekte entstehen wie bei hochfrequenten el.mag. Wellen. Es gibt also eine Elektronenbeugung! Nun sind aber die Elektronen keine Wellen sondern Teilchen.

Der Beugungsversuch zeigt, dass jedes Elektron wie eine Welle das Gitter durchläuft, ohne dabei aufzuhören ein unteilbares Teilchen zu sein.
Wir wissen aber auch, dass sich das Elektron in manch anderen Fällen ganz wie ein Teilchen bewegt, was keinerlei Welleneigenschaften aufweist.
So fliegen die Elektronen z.B. in einer Bildröhre auf festen Bahnen, die man genau so exakt vorausberechnen kann wie die Bahnen der Planeten.

Warum verhält sich ein Elektron mal wie eine Welle, mal wie ein Teilchen?
Wir erinnern uns, dass auch Licht das gleiche zweiseitige Verhalten zeigt.
Alles hängt vom Verhältnis zwischen der Wellenlänge und den Ausmaßen des Raumes ab, in dem die Bewegung vor sich geht.

Welche Wellenlänge entspricht nun aber der Bewegung eines Elektrons?
Man kann die Wellenlänge anhand des Beugungsbildes mit der gleichen Formel ermitteln, die zur Bestimmung der Wellenlänge von Röntgenstrahlen dient.
Dabei ergibt sich, die Wellenlänge ist umgekehrt proportional dem Impuls eines Teilchens. λ = h/p
Der Proportionalitätsfaktor zwischen ihnen ist eine universelle Konstante, die Planckkonstante h!

Mit h können wir nun die Frage beantworten weshalb sich in einer Bildröhre die Welleneigenschaften des Elektrons nicht äußern, während sie es im Kristall tun.
Die Wellenlänge des Elektrons in einer Bildröhre berechnet sich zu λ≈10^-11 m, der Durchmesser des Elektronenstrahls ist ungefähr 10^-4 m.
Der Durchmesser ist 10 Millionen mal größer als die entsprechende Wellenlänge!
Hier wird deutlich, dass sich in einer Bildröhre keinerlei Welleneigenschaften bei der Bewegung von Elektronen auf Bahnen zeigen können, dass es aber unbedingt zu Beugungserscheinungen kommen muss, wenn der gleiche Elektronenstrahl durch ein Kristall geht.

In welchen Grenzen hat der Begriff der Bahn eines Strahls einen Sinn?
Der Begriff der Teilchenbahn hat dann einen vernüftigen Sinn, wenn die Amplitute der Welle, die mit der Bewegung verknüpft ist, nach beiden Seiten der Bahn schnell zu Null wird.

Wie wirkt sich nun eine seitliche Begrenzung(Spalt) der Bahn aus?
Der Strahl hat hinter dem Spalt einen bestimmten(von der Wellenlänge abhängigen) Öffnungswinkel.

Wohin ist nun die Geschwindigkeit eines den Spalt durchlaufenden Teilchen gerichtet?
Ein Teilchen weist nur dann eine genau bestimmte Geschwindigkeitsrichtung auf wenn dessen Bewegung seitlich durch nichts begrenzt ist.
Wenn nun die den Spalt durchlaufenden Teilchen nicht genau parallel aus dem Spalt heraustreten, sondern in einem bestimmten Öffnungswinkel so liegt eben innerhalb dieses Winkels auch die Richtung der Geschwindigkeit des Teilchens.
Die Geschwindigkeit ist eine vektorielle Größe und wenn sie um einen bestimmten Winkel abweicht so bedeutet das, dass sie eine senkrechte Komponente erhalten hat die gleich dem Produkt der Geschwindigkeit und diesem Winkel ist.
Folglich zeigt die Geschwindigkeit des Teilchens nach dem Spaltdurchgang eine gewisse Streuung in der Fläche des Spaltes, denn wir wissen ja nicht, um welchen Winkel das Teilchen gerade abweicht.
Die Geschwindigkeit unterliegt einer Unbestimmtheit. Auch die Koordinate x zeigt eine Unbestimmtheit Δx.
Mit der Unbestimmtheit der Geschwindigkeit hat auch der Impuls p eine Unbestimmtheit. Δp = m Δv
Nach weiteren Rechnungen kommt man zu der für die Quantenmechanik fundamentalen Beziehung:
h ≤ Δp Δx
Je genauer die Koordinate gegeben ist um so weniger genau ist der Impuls gegeben, weil Δp umgekehrt proportional zu Δx ist.

Koordinate und Impuls eines Teilchens existieren als genaue physikalische Größe nicht gemeinsam!
Es ist prinzipell unmöglich ein Verfahren anzugeben was zu ihrer genauen Bestimmung führen würde.
Das liegt nicht an einer subjektiven Unvollkommenheit sondern das ist ein objektives Naturgesetz.
Diejenigen die das Unbestimmtheitsprinzip wiederlegen möchten, erwartet das traurige Schicksal der Erfinder der Perpetuum mobile!

Die Koordinate und der Impuls eines Teilchens, als genaue physikalische Größe, existieren nicht gemeinsam.
Auch existieren der Winkel(Azimut) und das Moment eines Teilchens, als genaue physikalische Größe, nicht gemeinsam.
Das ist ein objektives Gesetz.
Und hier:
Zitat:
Zitat von EMI
Wir senden einen Teilchenstrahl durch einen Spalt der Breite ∆b auf einen Bildschirm.
Die Teilchen des Strahls, z.B. Elektronen, haben die Ruhemasse mo.
Nach Planck kommt einem Schwingungsvorgang die Energie einer dem ruhenden Teilchen zugeordneten stationären, ebenen Welle
die im Ruhesystem S' in jedem Punkt x' die gleiche Phase hat mit der Frequenz f' gleich hf' zu.
Dieser Energie kommt wegen der Äquivalenzbeziehung E= moc² auch eine Masse zu.
Es gilt moc² = hf'
Auf dem Bildschirm stellen wir ein Beugungsmuster fest!

Im System S' ruht die Teilchenmasse mo. Ein im System S befindlicher Beobachter misst bei einer Relativgeschwindigkeit v zwischen den Systemen die Masse:

m = mo/√1-ß² , mit ß=v/c

Für die Schwingungsamplitute in S' gilt:

Ψ = Ψo sin 2Π f't'

Der Beobachter in S findet:

Ψ = Ψo sin 2Π f'/√1-ß² * (t - vx/c²)

er misst also eine geänderte Frequenz:

[1] f = f'√1-ß² = moc²/h√1-ß²

Für einen ruhenden Beobachter im gestrichenen System S' sollen an den Punkten x1' und x2' zwei Schwingungen mit gleicher Phase auftreten.
Gleichzeitig sei die Amplitute Null, wenn t2'=t1' ist.
Für einen im ungestrichenem System S ruhenden Beobachter sind die Zeiten t2≠t1, also ∆t=t2-t1≠0
Das ergibt sich aus den Transformationsformeln:

t1 = (t1' + x1'v/c²)/√1-ß²
t2 = (t2' + x2'v/c²)/√1-ß²

wonach

∆t = t2-t1 = t1 = ((x2'-x1')v/c²)/√1-ß² = (x2-x1)v/c² = ∆xv/c² ist.

Die Schwingungen, die in jedem Punkt x' im System S' mit gleicher Phase erfolgen, erscheinen dem ruhenden Beobachter in S als eine Welle, in der jeder Punkt mit einer Phasenverschiebung gegen seinen Nachbarn schwingt.
In der Zeit ∆t=T schreitet diese Welle um ∆x=λ fort.
T ist die Schwingungsdauer und λ der Abstand zwischen den Punkten die in gleicher Phase schwingen.
λ ist also die Wellenlänge und 1/T=f die Frequenz. Man erhält somit:

∆t = T = 1/f = λv/c²
λf = c²/v

Hier ist λf die Phasengeschwindigkeit u der Welle.

[2] u = c²/v

Die Wellenlänge λ ist mit [1] und [2]:

λ = u/f = c²/v * h√1-ß²/moc² = h/mv, und mit dem Impuls p=mv:

[3] λ = h/p

Der Teilchenstrahl wird durch den Spalt mit der Breite ∆b begrenzt.
Wie wirkt sich nun diese seitliche Begrenzung aus?
Der Strahl hat hinter dem Spalt einen Öffnungswinkel α.

Die hinter dem Spalt in Richtung α auslaufenden Strahlen haben gegeneinander einen Gangunterschied.
Das Begungsmuster auf dem Schirm ergibt sich dadurch, dass sich die einzelnen Strahlen in Richtung α überlagern.
Der Gangunterschied G zwischen den beiden Rändern des Spaltes hängt mit der Spaltbreite ∆b und dem Öffnungswinkel α wie folgt zusammen:

G = sinα * ∆b

Damit das erste Interferenzminimum auf dem Schirm noch optisch erkennbar ist, muss der Gangunterschied mindestens so groß sein wie die Wellenlänge λ des Teilchens:

[4] ∆b * sinα ≥ λ

Wenn nun die den Spalt durchlaufenden Teilchen nicht genau parallel aus dem Spalt heraustreten, sondern mit dem Öffnungswinkel α so liegt eben innerhalb dieses Winkels auch die Richtung der Geschwindigkeit v des Teilchens.
Die Geschwindigkeit v ist eine vektorielle Größe und wenn sie um einen bestimmten Winkel abweicht so bedeutet das, dass sie eine senkrechte Komponente erhalten hat die gleich dem Produkt der Geschwindigkeit und diesem Winkel ist.
Folglich zeigt die Geschwindigkeit des Teilchens nach dem Spaltdurchgang eine gewisse Streuung in der Fläche des Spaltes, denn wir wissen ja nicht, um welchen Winkel das Teilchen gerade abweicht.
Die Geschwindigkeit unterliegt einer Unbestimmtheit ∆v.
Mit der Unbestimmtheit der Geschwindigkeit hat auch der Impuls p eine Unbestimmtheit. Δp = m Δv

Die Teilchen, deren Ablenkungswinkel α einem Impuls entsprechen, der innerhalb des Δp des ersten Beugungsminimums auf der Impulsskala liegen, sind genau diejenigen, welche der folgenden Bedingung genügen:

[5] p * sinα ≤ ∆p

[3], [4] und [5] ergeben nunmehr:

∆p/p ≥ sinα ≥ h/p∆b , man kann hier sinα weglassen und ohne weiteres auch schreiben:

∆p/p ≥ h/p∆b , das nun mit p∆b multipliziert und wir erhalten:

∆p ∆b ≥ h.

Setzten wir hier für b das übliche x ein folgt die uns bekannte Unschärferelation:

∆p ∆x ≥ h
Gruß EMI

PS: Ich bevorzuge h, das reduzierte ђ ist gleich h/2Π
__________________
Sollen sich auch alle schämen, die gedankenlos sich der Wunder der Wissenschaft und Technik bedienen, und nicht mehr davon geistig erfasst haben als die Kuh von der Botanik der Pflanzen, die sie mit Wohlbehagen frisst.
Mit Zitat antworten