Einzelnen Beitrag anzeigen
  #42  
Alt 24.03.12, 20:29
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beitr?ge: 2.427
Standard AW: Raumdehnung vs. Bewegung durch den Raum

Hi alle,

hier ist ja was los. Lasst mich erstmal eine Sache klären:
Die Raumzeit ist genau dann flach, wenn die Energiedichte überall Null ist (und keine Gravitationswellen und so vorliegen).
Der Raum ist ein Schnitt durch die Raumzeit. Ein krummer Schnitt durch eine flache Raumzeit ergibt einen krummen Raum. Ein krummer Schnitt durch eine gekrümmte Raumzeit kann einen flachen Raum ergeben.

Beispiel Milne-Modell / leeres FRW-Universum. Die Raumzeit ist da definitiv flach. Ein nach der üblichen SRT-Definition gebildeter Raum ist auch flach. Der nach der FRW-Definition gebildete kosmologische Raum ist negativ gekrümmt.
Der kosmologische Raum beruht auf einer anderen Definition von Gleichzeitigkeit: nicht die Zeit zueinander ruhender Uhren ist die Koordinatenzeit, sondern die Zeit zueinander bewegter (also mitbewegter) Uhren. Während also die erste Definition für z.B. t=1 Jahr (ich unterdrücke mal eine Dimension) eine Ebene aus der Raumzeit schneidet, schneidet die zweite ein Hyperboloid aus.
Oder anschaulicher erklärt: bei FRW misst man Entfernungen mit mitbewegten Maßstäben. Bewegte Maßstäbe sind in Bewegungsrichtung kürzer und messen deswegen eine größere Länge - das ist die Radialkoordinate. Quer dazu bleibt alles gleich. Also ist der Radius eines Kreises in diesem Raum größer als U/2pi, was negative Krümmung bedeutet.
Dieser Effekt ist bei allen FRW-Raumzeiten da. Eine Raumzeit, die homogen mit Materie gefüllt ist, ist positiv gekrümmt, ebenso der dort mit Normalkoordinaten gebildete Raum. Wenn die Expansionsgeschwindigkeit aber genau dazu passt, dann wird der FRW-Raum durch den genannten Effekt - negative Krümmung - geradegebogen und ist in Summe flach.

Nochwas: Paradigmenwechsel sicher nicht. Echte Fachleute in der ART hatten noch nie ein Problem mit Koordinatentrafos, für die ändert sich nichts. Unter allen anderen (auch Kosmologen, das sind nicht immer Fachleute in der ART) ist aber dieses "Denkverbot Relativgeschwindigkeit" immer noch recht dominant. Ich selber hab's auch noch vor ein paar Jahren vertreten, bis ich durch ein paar Zufälle herausgefunden habe, dass man es nicht so streng sehen sollte, wenn man was verstehen will. Es wird mit dieser "Raumexpansion" schon wahnsinnig viel vollkommen unnötiger Mystizismus betrieben.

Hi Timm,

lass mich zu deiner Frage vor drei Seiten erstmal an einer Stelle zurückrudern:
Ich habe geschrieben, dass der gravitative Anteil irgendwann so groß wird wie der kinematische. Das ist nicht immer so, sondern nur in der Newtonschen Näherung. Der kinematische Effekt hat auch einen quadratischen Anteil, den man nur dann vernachlässigen kann, wenn viel Materie da ist und wenig Expansionsgeschwindigkeit. Das ist z.B. in unserem Universum nicht der Fall.
Ferner ist der gravitative Anteil (mit dem Beobachter im Zentrum) in einem gebremst expandierenden Universum eine Blauverschiebung, da kann Gleichheit also bestenfalls nach dem Betrag entstehen.

Zitat:
Zitat von Timm Beitrag anzeigen
Bedeutet "Verschwimmen" bei größeren Entfernungen, daß es die Beiträge Gravitation und Doppler nach wie vor gibt, sie sich aber mathematisch nicht mehr darstellen lassen? Oder macht die Theorie keine klaren Aussagen für diesen Fall?
Der ART sind die Begriffe Gravitationsrotverschiebung, Dopplerverschiebung und kosmologische Rotverschiebung völlig Wurscht. Die arbeitet nicht mit diesen Begriffen. (Genausowenig wie die SRT mit Längenkontraktion und Zeitdilatation arbeitet, wenn das hier anbringen darf, sondern mit der Lorentztransformation.)
Wenn ich "Verschwimmen" schreibe, dann meine ich damit, dass die Definitionen dieser Begriffe immer unschärfer werden.
Gravitationsrotverschiebung setzt eine statische Raumzeit voraus. Das ist auch im Universum eine gute Näherung über relativ kurze Zeiten, sagen wir mal ~1 Mrd Jahre. Wenn sich aber das "Potential" über den betrachteten Zeitraum deutlich ändert, dann kann ich z.B. das Potential am Anfang nehmen oder das am Ende (oder irgendeins dazwischen), aber zwischen den beiden ist ein Unterschied. Je nachdem, welches ich wähle kommt eine anderer Wert raus, und ohne weitere Annahmen und Definitionen ist keiner von denen besser oder schlechter als der andere.
Ebenso mit dem Dopplereffekt, der setzt eine exakte Geschwindigkeitsdefinition voraus. Man kann Relativgeschwindigkeiten zweier voneinander entfernter Dinge zwar auch in der ART schön definieren, indem man den einen Geschwindigkeitsvektor zum anderen hin "parallel verschiebt", und dann direkt am selben Ort vergleicht. Nur: in gekrümmter Raumzeit ist das Ergebnis dieses Paralleltransports abhängig von dem Weg, auf dem ich verschiebe. Wieder bekommt man unterschiedliche Ergebnisse, und nur durch zusätzliche Definitionen kann ich eines davon als das "richtige" auszeichnen.
Chodorowski geht diesen Weg in dem von dir verlinkten Paper. Ich hätte das eher lesen sollen, da sind einige interessante Ergebnisse drin. Aber seine Definition ist nicht irgendwie zwingend, ich zum Beispiel würde eigentlich was anderes definieren.
Zum Anteil der kinematischen Komponente: ich habe das noch nicht zuende gedacht, aber zumindest nach Chodorowskis Definition bleibt die auch bei großen Entfernungen dominant. Wenn ich mich richtig erinnere (ich hab sowas ähnliche früher schon mal gerechnet), wird - unter allen ewig expandierenden Universen - der Gravitationsanteil nur bei de Sitter gleich groß. Bei wieder kollabierenden Universen ist er am Umkehpunkt der einzige Anteil, also sehr dominant.

Ge?ndert von Ich (24.03.12 um 20:38 Uhr)
Mit Zitat antworten