Einzelnen Beitrag anzeigen
  #2  
Alt 06.08.18, 15:38
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Beitr?ge: 3.124
Standard AW: Fundamentale Regeln der Quantenmechanik nach Everett

Ich möchte im Folgenden kurz modifizierte Regeln zur Quantenmechanik zusammenfassen, die zur 'Everettschen Formulierung' führen. Die Formulierung der Regeln ist mathematisch einfach gehalten, es existieren Verallgemeinerungen bzw. Präzisierungen .

Kursiv gesetzter Text bezieht sich auf reale Systeme und deren Dynamik, Präparation und Messung, sowie tatsächlich messbare Größen d.h. Observablen sowie deren Messwerte.

Normal gesetzter Text bezieht sich auf rein mathematische Objekte, die die o.g. physikalischen Systeme etc. in gewissem Sinne repräsentieren .


Die folgenden Regeln sind identisch (!) zu den etablierten Regeln der 'orthodoxen Formulierung'

1. Die Beschreibung eines Quantensystems erfolgt im Rahmen eines separablen Hilbertraumes

2. Der Zustand eines einzelnen Quantensystems wird durch einen normierten Vektor als Element dieses Hilbertraumes beschrieben.

3. Die Zeitentwicklung eines einzelnen isolierten Quantensystems wird durch einen unitären Zeitentwicklungsoperator U(t) beschrieben; diese Regel ist vollständig äquivalent zur Schrödingergleichung

4. Eine beobachtbare Größe, d.h. eine Observable eines Quantensystems wird durch eine selbstadjungierten Operator repräsentiert, der auf die Zustandsvektoren wirkt.

--------------------

Die folgende Regel unterscheidet die 'Everettsche Formulierung' fundamental (!) von der sogenannten 'orthodoxen Interpretation':

5. Unter der Messung einer Observable eines Quantensystems versteht man zunächst eine spezielle Wechselwirkung dieses Quantensystems mit einem zweiten (makroskopischen) Quantensystem – dem sogenannten Messgerät – gemäß der o.g. unitären Zeitentwicklung
Formal liegt eine Messung dann vor, wenn zwischen den Eigenzuständen des selbstadjungierten Operators im zu messenden Quantensystem und den sogenannten Zeiger-Zuständen des Messgeräts Korrelationen der Form dergestalt resultieren, dass die Zeiger-Zustände die Messwerte der Observablen repräsentieren.
Phänomenologisch muss diese Korrelation dynamisch stabil sein, um als Messung gelten zu können.

--------------------

In der 'Everettschen Interpretation' stellen die folgenden Regeln keine fundamentalen Axiome dar. Man kann stattdessen argumentieren, dass es möglich ist, sie aus dem Formalismus abzuleiten bzw. zumindest zu motivieren, und dass sie für praktische Anwendungsfälle weiterhin gültig sind.


A. Die möglichen Messwerte einer Observable entsprechen dem Spektrum des korrespondierenden selbstadjungierten Operators

B. Die Wahrscheinlichkeit, einen bestimmten Messwert zu erhalten, entspricht der Bornschen Regel

C. Der [i]Erwartungswert für die Messung einer Observablen[i] folgt ebenfalls der Bornschen Regel

D. Aus Sicht eines Beobachters kann – im Falle aufeinanderfolgender Messungen am selben Quantensystemen – eine Messung mit Messwert a aufgefasst werden als Präparation des Gesamtsystems in einen neuen initialen Zustand repräsentiert durch den entsprechenden Eigenzustand, der in der Folge für die weitere Zeitentwicklung sowie weitere Messungen verwendet wird. Dies entspricht dem sogenannten von-Neumannsche Projektionspostulat, das aus Sicht eines Beobachters effektiv gültig bleibt.
--------------------

Erläuterung zu wesentlichen Unterschieden zwischen 'Everettscher' sowie 'orthodoxer Interpretation':

Zunächst mal sind beide Formalismen mathematisch inäquivalent, weswegen man streng genommen von einer 'Everettschen Quantenmechanik' sprechen sollte.

In der 'orthodoxen Interpretation' wird nach von Neumann, Dirac u.a. der Begriff der Messung ohne konsistente Definition eingeführt. Insbs. die Forderung des Projektionspostulates im Zuge einer Messung führt zu einer logischen Inkonsistenz. Denn einerseits widerspricht die Zeitentwicklung im Zuge einer Messung der o.g. unitären Zeitentwicklung, andererseits müsste das Messgerät als (makroskopisches) Quantensystem ebenfalls dieser unitären Zeitentwicklung gehorchen. Es bleibt offen, was ein Messgerät bzw. eine Messung von einem gewöhnlichen (makroskopischen) Quantensystem bzw. einer gewöhnlichen Wechselwirkung mit unitärer Zeitentwicklung unterscheidet. Demzufolge ist die 'orthodoxer Interpretation' unvollständig bzw. inkonsistent.

Everett verzichtet explizit auf das Projektionspostulat und behandelt Messungen als spezielle Klasse von Wechselwirkungen, und zwar dergestalt, dass eine dynamisch stabile Korrelation zwischen den Eigenschaften des zu messenden Quantensystems sowie dem (makroskopischen) Messgerät resultiert. Damit entspricht die Dynamik des Zustandsvektors vollständig und konsistent der unitären Zeitentwicklung. Daraus resultiert allerdings die Notwendigkeit, die Anwendbarkeit weiterer etablierter Regeln – auf die Everett im Zuge des Verzichts auf das Projektionspostulat eliminieren muss, die sich jedoch in Übereinstimmung mit phänomenologischen Beobachtungen befinden – zu motivieren oder zu beweisen.


Zur Einordung des Messproblems:

Ein wesentliche Erkenntnis ist das sogenannte Maudlin-Trilemma. Maudlin zeigt, dass die folgenden drei Aussagen zusammengenommen inkonsistent sind:
i) Der Zustandsvektor beschreibt das System gem. (2) vollständig
ii) Der Zustandsvektor folgt immer einer linearen Zeitentwicklung (3)
iii) Messungen haben immer ein definiertes Ergebnis (im Sinne einer definierten Eigenschaft bzgl. einer Observablen)

Die Standard-Quantenmechanik lehnt (ii) ab und postuliert ad hoc einen Kollaps.

Everett hält an (i - ii) fest und lehnt (iii), d.h. das Kollapspostulat, ab. Dies führt nicht zu einem einzigen, definierten Ergebnis (iii), stattdessen sind alle quantenmechanisch zulässigen Messergebnisse in je einer Komponente, des Zustandsvektors repräsentiert. Diese Zweigstruktur steht im Einklang mit der unitärer Zeitentwicklung (3) bzw. (ii) des wechselwirkenden Gesamtsystems


Details:

Betrachten wir ein Photon, das durch einen Strahlteiler läuft, und anschließend zwei Wege einschlagen kann. Der entsprechende Zustand sei

α|1,0> + β|0,1>

α² + β² = 1

Die Notation besagt, dass ein Photon im ersten |1,0> bzw. zweiten |0,1> Weg existiert.

In diese Wege bringen wir je ein Atom |a>, das durch das Photon zu |a*> angeregt wird. Bevor das Photon eines dieser Atome erreichen kann, liegt der Zustand

(α|1,0> + β|0,1>) ⊗ |a,a>

vor

Nach der Wechselwirkung - letztlich bestimmt durch die Lichtlaufzeit - liegt

α|0,0> ⊗ |a*,a> + β|0,0> ⊗ |a,a*> = |0,0> ⊗ (α|a*,a> + β|a,a*>)

vor.

Das Photon wurde absorbiert, die beiden Atome sind miteinander verschränkt.

Bisher ist das Standard-Textbuch-QM, alle stimmen darin überein, tausende von Physikern benutzen das tagtäglich ohne große Worte zu verlieren.

Nun ersetzen wir die beiden Atome |a,a> durch zwei makroskopischen Detektoren |A,A>; falls ein Detektor das Photon registriert, zeigt er dies am Display an; diesen Zustand bezeichne ich als |A*>. Außerdem beinhalte dieser Zustand noch die Verschränkung mit weiteren Freiheitsgraden im Labor sowie dem Beobachter, d.h. in |A*> beobachtet ein Beobachter anhand des Displays die Registrierung Photons.

Gemäß der Schrödingergleichung inkl. der Dekohärenz erhalten wir wieder einen Zustand

|0,0> ⊗ (α|A*,A> + β|A,A*>)


Nun folgt das große Schisma der Quantenmechanik:


Anhänger der orthodoxen Quantenmechanik postulieren - im Widerspruch zur Schrödingergleichung - die stochastische Reduktion des Zustandes auf eine der beiden klassischen Detektor-, Display- und Beobachterzustände, d.h. z.B.

|A*,A>

mit Wahrscheinlichkeit p = α².

Der erste Detektor zeigt die Registrierung der Photons an, der zweite nicht.


Anhänger der Everettschen Quantenmechanik akzeptieren die Weiterexistenz der beiden verschränkten Detektoren - in Übereinstimmung mit der Schrödingergleichung - d.h. es gilt weiterhin

|0,0> ⊗ (α|A*,A> + β|A,A*>)

wobei der Beobachter mit einer Wahrscheinlichkeit p = α² „in“ |A*,A> die Detektion am erste Detektor sieht, sowie mit der jeweils anderen Wahrscheinlichkeit p = 1 - α² „in“ |A,A*> die Detektion am zweiten Detektor.

Gewissermaßen verzweigen sich Detektoren und Beobachter. Dies ist jedoch nicht ganz zutreffend, da diese Verzweigung bereits in

(α|1,0> + β|0,1>) ⊗ |A,A>

angelegt war.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.

Ge?ndert von TomS (06.08.18 um 15:59 Uhr)
Mit Zitat antworten