Thema: Unendlichkeit
Einzelnen Beitrag anzeigen
  #15  
Alt 04.12.22, 15:53
Jakito Jakito ist offline
Newbie
 
Registriert seit: 02.07.2021
Ort: München
Beitr?ge: 29
Standard AW: Unendlichkeit

Zitat:
Zitat von Eyk van Bommel Beitrag anzeigen
Ich möchte zum Themenbereich zunächst auf die Videobeiträge von Prof. Weitz verweisen Alle Videos / Edmund Weitz. Ich kenne niemanden der mathematische Themen, zu Pi, Unendlichkeiten, Zahlen/Mengen klarer/besser darstellt.
Nachdem ich dort dieses Video
2013-12-20 Goodstein-Folgen (Weihnachtsvorlesung 2013, Teil 2 von 2) [HAW] X
gefunden habe, entstand bei mir die Lust, noch eine weitere Antwort zu geben auf:
Zitat:
Zitat von Jakito
Die Frage wäre vielleicht, ob es auch mehr als eine Art gibt, in der etwas endlich sein kann.
Die Zahl g_i(4) mit i:=3 . 2^402.653.209, also die i-te Zahl in der Goldstein-Folge zum Startwert 4, ist zwar endlich, und auch gut endlich beschreibbar. Aber weil i so gewählt ist, dass gilt g_i(4) = max_b (g_b(4)), ist es auch die 4-te Zahl in der Folge G(n) := max_b (g_b(n)). Dies ist zwar eine Folge natürlicher Zahlen, aber um das zu beweisen, muss man die Wohlordnung von \epsilon_0 vorraussetzen. Und diese Wohlordnung lässt sich nicht in der Peano Arithmetik beweisen. Diese Wohlordnung ist zwar wahr, und zwar genauso wahr wie die Konsistenz der Peano Arithmetik, aber "absolut" beweisbar sind beide nicht.


Zitat:
Zitat von antaris
Zitat:
Zitat von Jakito
Nein, 1.41421356237 ist nicht, was ich mit sqrt(2) gemeint habe. Die endliche Beschreibung ist sqrt(2):=x mit x^2=2 und x >= 0.
Ok per mathematische Definition.
Man kann die Zahl sqrt(2) geometrisch konstruieren. Ist schwierig in Genauigkeiten der Planck-Skala die Zeichnung zu erstellen aber undenkbar ist es nicht. Warum aber sollte sqrt(2) unendlich sein, wenn man sie theoretisch exakt und endlich bestimmen kann? Wozu sollte sie genauer bestimmt werden, als wie sie konstruiert werden kann, selbst wenn eine genauere Bestimmung mittels Berechnung möglich wäre?
Es ist egal ob ich 1 m oder sqrt(2) m abmessen will. Beide haben an der Planck-Skala ihre maximale Genauigkeit.
Ursprünglich fand ich noch die Idee ganz nett, statt sqrt(2) eine Lösung von x^5 + 4 x^4 =1 zu betrachten. Irgendwie dachte ich, es wäre "schwer", aus den "Lösungen" x?-3.99608, x?-0.744465, x?0.030325 - 0.702483 i, x?0.030325 + 0.702483 i, und x?0.679894 eine bestimmte auszuwählen. Ist es aber nicht, man kann ja z.B. x?-0.744465 einfach durch die Forderung -0.8 < x < -0.6 auswählen. Und diese Art der Auswahl klappt immer.