Einzelnen Beitrag anzeigen
  #18  
Alt 03.11.11, 15:53
Benutzerbild von JoAx
JoAx JoAx ist offline
Singularität
 
Registriert seit: 05.03.2009
Beiträge: 4.320
Standard AW: Welchen "Charakter" hat die Minkowski-Raumzeit?

Hi Leute!

Tut mir leid, dass ich mich da rar mache, aber ich stehe doch ziemlich auf dem Schlauch. (Schätze ich.)

Zuerst @SCR:
Ich muss gestehen - ich verstehe nicht, auf was sich deine Einschätzung, dass die Minkowski-Metrik eine "toroidale" Metrik sein soll, basiert. Nur weil es summa summarum (in Gänze) auch flach ist? Das wäre mir zu wenig.
==

Ich habe in den vergangenen Tagen auch etwas zu Topologie gelesen, was so im Netz auf die Schnelle zu finden ist, kann aber damit ehrlich gesagt nicht viel anfangen. Speziell, was diese in der SRT "zu suchen" hätte.
==

Thema - nichteuklidische Geometrie.
So wie ich das sehe, geht (/ging) es dabei ursprünglich darum, "Flächen" eingebettet im "Volumen" zu beschreiben, ohne die Sicht aus dem "Volumen" heraus einnehmen zu müssen. (Erdoberfläche z.B., Lobatschewski-, Riemann-Geometrie) Mein Problem ist nun, dass

1. das "Volumen" dabei euklidisch ist,
2. die infinitesimal kleine Stückchen der Oberfläche aber auch.

Die Minkowski-Raumzeit ist zwar flach, aber in keiner "Skalierung" euklidisch. Daraus schließe ich, dass der "hyperbolische Charakter" der Raumzeit durch keine geometrische Figur, eingebettet in einem euklidischen "Über"-Raum, dargestellt werden kann. Prinzipiell nicht. Unter der "Geometrie" ("Charakter") wird hier imho nicht die (innere) "Krümmung(-en)" gemeint. Die innere Krümmung ist hier auf beliebigen Abständen = Null. (?)
An dieser Stelle Fragen an Eugen:

- Was wird unter der gleichen Struktur der Transformationen gemeint?
- Ist der hyperbolische (Lobatschewski) Raum infinitesimal nicht auch euklidisch?

Und noch etwas weiter:

Zitat:
Zitat von Bauhof Beitrag anzeigen
Im dreidimensionalen Ortsraum erfolgt die kugelsymmetrische Lichtausbreitung in Form einer Kugel mit einem zeitlich anwachsenden Radius R:

(1) x² + y² + z² = R = c²t²

Dieser Sachverhalt stellt ich vierdimensional wie folgt dar:

(2) x² + y² + z² ─ (ct)² = 0
Speziell an dieser Stelle sehe ich zunächst keinen Unterschied zu einem "normalen" Raum. Ich meine - wenn man Radius als eine Funktion R(a) betrachtet, dann ist es ja ganz normal, diese Beziehung:

x² + y² + z² = R(a)²

woraus sich ganz zwanglos

x² + y² + z² - R(a)² = 0

ergibt. D.h. imho, dass diese Formeln für den "Charakter" zunächst ziemlich bedeutungslos sind. Erst die Invarianz dieses Ausdrucks unter bestimmten Transformationen kann da (vermutlich) das Licht in's Dunkle bringen.

Die müsste man sich anschauen. Hmmmm....


Gruß, Johann
Mit Zitat antworten