Einzelnen Beitrag anzeigen
  #9  
Alt 29.01.19, 21:40
Philipp Wehrli Philipp Wehrli ist offline
Profi-Benutzer
 
Registriert seit: 04.07.2009
Ort: Winterthur
Beitr?ge: 255
Standard AW: Informationserhaltung beim Wellenkollaps

Zitat:
Zitat von Simon_St Beitrag anzeigen
Ich sage: Durch den Kollaps geht nicht Information verloren, sondern es wird Information erzeugt.
Ich denke, du bist auf dem richtigen Weg. Wobei TomS natürlich auch recht hat, wenn er schreibt:
Zitat:
Zitat von TomS Beitrag anzeigen
Und Informationserhaltung bedeutet lediglich, dass dieser Zustandsvektors immer einer unitären Zeitentwicklung unterliegt, d.h. insbs. keine stochastischen Sprünge durchführt. Die Sprünge würden die Informationserhaltung verletzen.
TomS meint dabei die 'Information' aus Sicht des äusseren Beobachters. Für den äusseren Beobachter geht natürlich keine Information verloren und es entsteht auch keine.

Aus Sicht des inneren Beobachters entsteht aber tatsächlich Information. Etwas sehr Ähnliches passiert beim Unruh-Effekt oder bei der Hawking-Strahlung. Dabei meint die 'Information' die von Neumann Entropie, die das Äquivalent zur Shannon Entropie ist, nämlich in der Quantentheorie.

Ein Vakuumzustand eines Quantensystems in einem Gebiet O hat von Neumann Entropie null, enthält also null Information. Wird das Quantensystem aber in zwei Teilsysteme A und B geteilt, so enthalten diese beide eine Information, die grösser als null ist. Die so entstehende Information ist proportional zum Flächeninhalt der Trennfläche.

Die Trennung geschieht bei der Hawking Strahlung durch den Schwarzschildradius des schwarzen Loches. Beim Unruh-Effekt wird eine Rakete gleichmässig durch ein Vakuum beschleunigt. Dadurch entsteht hinter der Rakete ein Horizont, was dazu führt, dass der Pilot in der Rakete nicht mehr ein Vakuum um die Rakete herum sieht, sondern ein Bad von thermischen Teilchen. Damit haben Unruh und Hawking gezeigt, dass die Informationsmenge vom Beobachter abhängt.

Bei der Herleitung dieser Effekte sieht man, dass der Vakuumzustand zusammengesetzt ist aus verschränkten Zuständen. Durch den Horizont werden die Verschränkungen getrennt, so dass jeder Teilbereich Information enthält. Übrigens zeigt eine Berechnung von C.F. von Weizsäcker und Thomas Görnitz, dass der Rand des Universums gerade so viel Information enthält, wie zur Beschreibung aller Teilchen des Universums benötigt wird.

Ich denke, wir sollten Verschränkungen als Grundelemente der Information anschauen. Wenn ich nur einen Teilbereich des verschränkten Systems sehe, habe ich Information über den anderen Bereich. Wenn ich das System als Ganzes sehe, habe ich aber keine Information über die Teilbereiche.
Mit Zitat antworten