Quanten.de Diskussionsforum  

Zurück   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Hinweise

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

Antwort
 
Themen-Optionen Ansicht
  #1  
Alt 17.07.16, 10:26
Slash Slash ist offline
Profi-Benutzer
 
Registriert seit: 30.07.2008
Beiträge: 439
Standard Wieviele Möglichkeiten gibt es für 2 Teilchen sich in einem 1 m³ aufzuhalten?

Hallo zusammen,

Es gibt die populärwissenschaftliche Behauptung, dass - wenn das Universum unendlich groß ist - sich auch der sichtbare Teile unseres Universum unendlich oft wiederholen würde: Es gibt also diesen Beitrag unendlich oft.

Diese Aussage ist der Ausgangspunkt für meine Frage, aber aus ihr heraus stellte sich für mich eine andere Frage.

Was ich nicht ganz verstehe ist, dass die Anzahl Möglichkeiten doch schon bei einem Universum von 1 m³ und 2 Teilchen unendlich groß ist, wenn die Positionen der Teilchen durch reellwertige Koordinaten dargestellt werden (und auch die Geschwindigkeiten oder der Impuls, etc.).

Im Fall durch die Beschreibung mit reellwertigen, physikalischen Größen ergibt sich doch eine so hohe Anzahl Möglichkeiten, dass sie "mehr" sind, als (die unendlichen), aber nur abzählbaren Möglichkeiten von unendlich vielen Bereichen des Universums.

Anders gefragt: Von den natürlichen Zahlen gibt es unendlich viele, von den reellen Zahlen gibt es aber im Bereich von 0 bis 1 mehr als es natürliche Zahlen gibt.

Ist dieses mathematische Aussage auch in der Physik auch anzuwenden und heißt das nicht, dass sich für ein Teilchen undendliche viele Möglichkeiten ergeben, sich in einem 1 m³ Volumen aufzuhalten und zwar mehr, als es abzählbare (wenn auch unendlcihe viele) Universen geben könnte?

Vielleicht sehe ich ja etwas falsch.



VG
Slash
Mit Zitat antworten
  #2  
Alt 17.07.16, 13:26
Hawkwind Hawkwind ist offline
Singularität
 
Registriert seit: 22.07.2010
Ort: Rabenstein, Niederösterreich
Beiträge: 2.644
Standard AW: Wieviele Möglichkeiten gibt es für 2 Teilchen sich in einem 1 m³ aufzuhalten?

Zitat:
Zitat von Slash Beitrag anzeigen
Was ich nicht ganz verstehe ist, dass die Anzahl Möglichkeiten doch schon bei einem Universum von 1 m³ und 2 Teilchen unendlich groß ist, wenn die Positionen der Teilchen durch reellwertige Koordinaten dargestellt werden (und auch die Geschwindigkeiten oder der Impuls, etc.).
Keine Ahnung, ob das so offensichtlich ist. Es kann ja durchaus sein, dass eine Quantentheorie der Gravitation eine "gekörnte" Raumzeit impliziert, siehe z.B.
Forscher: Raumzeit ist körnig
Die gestückelte Raumzeit
Mit Zitat antworten
  #3  
Alt 17.07.16, 17:53
Slash Slash ist offline
Profi-Benutzer
 
Registriert seit: 30.07.2008
Beiträge: 439
Standard AW: Wieviele Möglichkeiten gibt es für 2 Teilchen sich in einem 1 m³ aufzuhalten?

Zitat:
Zitat von Hawkwind Beitrag anzeigen
Keine Ahnung, ob das so offensichtlich ist. Es kann ja durchaus sein, dass eine Quantentheorie der Gravitation eine "gekörnte" Raumzeit impliziert, siehe z.B.
Forscher: Raumzeit ist körnig
Die gestückelte Raumzeit
Ja, ich finde das auch nicht offensichtlich.

Aus diesem Grund auch meine Frage, weil ich bisher dazu noch nichts gehört habe.

Nach meinem Verständnis werden physikalische Größen durch reellwertige Zahlen dargestellt. Vielleicht / vermutlich sind aber auch das nur Modellannahmen.

VG
Slash
Mit Zitat antworten
  #4  
Alt 17.07.16, 19:07
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.932
Standard AW: Wieviele Möglichkeiten gibt es für 2 Teilchen sich in einem 1 m³ aufzuhalten?

Es gibt dafür auch keine Obergrenze.
Anders sieht es aus, wenn du den Impuls mit dazu nimmst. Wegen der Unschärferelation gibt es dann tatsächlich nur endlich viele Zustände in einem bestimmten Phasenraumvolumen. Das heißt, die Dichte solcher Zustände ist dann limitiert, wenn auch der Impuls nach oben begrenzt ist, z..B. in Systemen bestimmter Temperatur. Eine absolute Obergrenze ergibt sich bei bekannter Energie, die im Volumen zur Verfügung steht.
Mit Zitat antworten
  #5  
Alt 18.07.16, 05:47
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Beiträge: 2.650
Standard AW: Wieviele Möglichkeiten gibt es für 2 Teilchen sich in einem 1 m³ aufzuhalten?

Lassen wir mal die QM außen vor.

Es gibt für ein System in einem endlichen Raumbereich überabzählbar unendlich viele Zustände. Es gibt in einem unendlichen Universum abzählbar unendlich viele endliche Raumbereiche. Demnach gibt es für ein System in einem unendlichen Universum überabzählbar unendlich mal abzählbar unendlich gleich überabzählbar unendlich viele mögliche Zustände.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Mit Zitat antworten
  #6  
Alt 18.07.16, 10:01
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.932
Standard AW: Wieviele Möglichkeiten gibt es für 2 Teilchen sich in einem 1 m³ aufzuhalten?

Zitat:
Zitat von TomS Beitrag anzeigen
Lassen wir mal die QM außen vor.

Es gibt für ein System in einem endlichen Raumbereich überabzählbar unendlich viele Zustände. Es gibt in einem unendlichen Universum abzählbar unendlich viele endliche Raumbereiche. Demnach gibt es für ein System in einem unendlichen Universum überabzählbar unendlich mal abzählbar unendlich gleich überabzählbar unendlich viele mögliche Zustände.
Das ist m. E. vollkommen unhilfreich, weil die Frage sich ja explizit auf diese Multiversumsgeschichte bezog. Und dieses Argument basiert nun mal darauf, dass in einem begrenzten Volumen mit begrenzter Temperatur nur eine endliche Anzahl Quantenzustände Platz hat (Fußnote 5 im verlinkten Paper). Unter dieser Randbedingung gibt es also im ergodisch unendlichen Universum abzählbar unendlich viele Quantenzustände, mit der zwingenden Schlussfolgerung, dass sich jeder beliebige Quantenzustand jedes beliebigen endlichen Volumens unendlich oft im Universum wiederholt.
Mit Zitat antworten
  #7  
Alt 18.07.16, 11:03
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Beiträge: 2.650
Standard

Zitat:
Zitat von Ich Beitrag anzeigen
Das ist m. E. vollkommen unhilfreich, weil die Frage sich ja explizit auf diese Multiversumsgeschichte bezog. Und dieses Argument basiert nun mal darauf, dass in einem begrenzten Volumen mit begrenzter Temperatur nur eine endliche Anzahl Quantenzustände Platz hat (Fußnote 5 im verlinkten Paper).
Das Paper ist natürlich selbst nicht besonders hilfreich, da es diverse implizite Annahmen und Spekulationen beinhaltet.

1) Betrachten wir mal die Zustandsdichte eines Photonengases:

D(ω) ~ V ω²

Eoine Diskretisierung würde künstlich durch Randbedingungen des Kastens erfolgen; betrachtet man den Kasten jedoch als Bestandteil eines größeren Systems, so bleiben die Energieniveaus kontinuierlich, d.h. es liegt keine Diskretisierung vor .

2) Die Zustandsdichte ist doch nicht abhängig von der Temperatur; anders formuliert: die Temperatur bzw. das anzuwende Ensemble entscheiden, welche Zustände ich bei einer bestimmten Temperatur besetzen kann. Im mikrokanonischen Ensemble mit fester, endlicher Temperatur E° kann ich natürlich keinen Zustand mit E > E° besetzen; für das kanonische Ensemble sind jedoch alle Zustände realisierbar, d.h. beliebig hochenergetische Zustände.

3) Ausschließlich mit Fermionen zu argumentieren ist m.E. nicht besonders hilfreich.

Wenn überhaupt, dann müsste man ohne Einführung einer Temperatur argumentieren, denn das Universum als Ganzes und unter Einbeziehung aller Freiheitsgrade (= ohne Ausspuren) ist ein abgeschlossenes Quantensystem und kann zumindest prinzipiell exakt ohne statistische Mechanik behandelt werden. Dazu muss man zunächst den Hilbertraum einer geeigneten Theorie konstruieren; haben wir heute leider nicht verfügbar, aber ich behaupte mal kühn, dass auch unter Einbeziehung der Quantengravitation die orthodoxe Quantenmechanik gültig bleibt. Damit ist unser Zustandsraum ein unendlich-dimensionaler, separabler Hilbertraum, d.h. wir haben eine abzählbare Basis. Allerdings schließt dies nicht aus, dass überabzählbar viele, unitär inäquivalente Zustände existieren. In "normalen" Quantenfeldtheorien ist das die Regel; in Theorien wie der Schleifquantengravitation könnte durch die lokale Constraintalgebra H ~ 0, G ~ 0 und D ~ 0 der Zustandsraum tatsächlich ein abzählbarer Zustandsraum resultieren (müsste ich nachlesen).

Aus dem holographischen Prinzip würde für ein System gegebener Masse M auf dessen Oberfläche A eine endliche Zustandsdichte

ln D(M) ~ A / A°.

Allerdings sehe ich kein Argument, dass diese Masse M generalisiert (ich kenne das nur für schwarze Löcher, AdS u.a. vereinfachende Modelle) oder diskretisiert (warum soll M nicht beliebig variieren können?).

Zusammenfassend glaube ich nicht, dass wir heute bereits genügend wissen, um zwischen den drei Fällen i) endlicher, ii) abzählbar unendlicher sowie iii) überabzählbar unendlicher Zustandsdichte in einem endlichen Volumen entscheiden zu können.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Mit Zitat antworten
  #8  
Alt 18.07.16, 15:29
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.932
Standard AW: Wieviele Möglichkeiten gibt es für 2 Teilchen sich in einem 1 m³ aufzuhalten?

Zitat:
Zitat von TomS Beitrag anzeigen
Das Paper ist natürlich selbst nicht besonders hilfreich, da es diverse implizite Annahmen und Spekulationen beinhaltet.
Annahmen können hilfreich sein.
Zitat:
1) Betrachten wir mal die Zustandsdichte eines Photonengases:

D(ω) ~ V ω²

Eoine Diskretisierung würde künstlich durch Randbedingungen des Kastens erfolgen; betrachtet man den Kasten jedoch als Bestandteil eines größeren Systems, so bleiben die Energieniveaus kontinuierlich, d.h. es liegt keine Diskretisierung vor .
Ja, wenn du das Volumen unendlich groß machst, dann liegen die Zustände unendlich dich beieinander. Und diese unendlich vielen Zustände haben alle gemeinsam, dass sie nicht auf den Kasten lokalisiert werden können.
Nein, die endliche Anzahl von Zuständen in einem gegebenen Volumen bis zu gegebener Energie ist kein Artefakt irgendwelcher Betrachtungsweisen. Wir reden hier über die Basis der statistischen Thermodynamik, wie man sie heute versteht. Die solltest du nicht versuchen, wegzudiskutieren.
Zitat:
2) Die Zustandsdichte ist doch nicht abhängig von der Temperatur; anders formuliert: die Temperatur bzw. das anzuwende Ensemble entscheiden, welche Zustände ich bei einer bestimmten Temperatur besetzen kann. Im mikrokanonischen Ensemble mit fester, endlicher Temperatur E° kann ich natürlich keinen Zustand mit E > E° besetzen; für das kanonische Ensemble sind jedoch alle Zustände realisierbar, d.h. beliebig hochenergetische Zustände.
Dann nehmen wir stattdessen eben eine fixe Energie. Damit will ich nicht sagen, dass Tegmarks Annnahme nicht hilfreich sein könnte (keine Ahnung), sondern nur, dass sie nicht notwendig ist.
Zitat:
3) Ausschließlich mit Fermionen zu argumentieren ist m.E. nicht besonders hilfreich.
Hilfreich wofür? Vielleicht hat er sich ja was gedacht dabei, vielleicht nicht. Das ändert aber nur quantitativ was, die endliche Zustandszahl bleibt.
Zitat:
Wenn überhaupt, dann müsste man ohne Einführung einer Temperatur argumentieren, denn das Universum als Ganzes und unter Einbeziehung aller Freiheitsgrade (= ohne Ausspuren) ist ein abgeschlossenes Quantensystem und kann zumindest prinzipiell exakt ohne statistische Mechanik behandelt werden.[...]
Das fällt wiederum bei mir unter "unhilfreich", weil aus dem Exkurs kein Ergebnis rauskommt. Ich möchte auch gar nicht so viel rumspekulieren, es gibt doch einen Stand des Wissens. Vielleicht falsch, wer weiß das schon hundertprozentig, aber doch eindeutig, was diese Frage angeht.
Zitat:
Zusammenfassend glaube ich nicht, dass wir heute bereits genügend wissen, um zwischen den drei Fällen i) endlicher, ii) abzählbar unendlicher sowie iii) überabzählbar unendlicher Zustandsdichte in einem endlichen Volumen entscheiden zu können.
Und der Bekenstein labert nur so vor sich hin, oder wie siehst du das? Wie gesagt mag ich gar nicht ausschließen, dass man irgenwann mal was anderes findet, aber für heute gilt die Bekenstein-Grenze, und damit ist die Frage doch entschieden.
Mit Zitat antworten
  #9  
Alt 18.07.16, 23:12
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Beiträge: 2.650
Standard AW: Wieviele Möglichkeiten gibt es für 2 Teilchen sich in einem 1 m³ aufzuhalten?

Ich wollte lediglich darauf hinweisen, dass dem Artikel einige unbewiesene Annahmen zugrundeliegen.

Zur Zustandsdichte: wenn ein endliches Voluemen vorliegt, dann ist ω diskret; wenn ein unendliches Volumen vorliegt und man lediglich einen endlichen Ausschnitt betrachtet, dann ist D(ω) ~ V ω² und ω ist nicht diskret. Damit ist die Gesamtzahl der Zustände ∫ dω D(ω) nicht endlich. Ja, die Zahl der Zustände bis zu einer festen Grenzenergie ist endlich, aber es gibt in einem kanonischen Ensemble keinen Grund, eine Grenzenergie anzunehmen.

Ich halte die Argumentation für wenig überzeugend.
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Mit Zitat antworten
  #10  
Alt 19.07.16, 08:08
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.932
Standard AW: Wieviele Möglichkeiten gibt es für 2 Teilchen sich in einem 1 m³ aufzuhalten?

Zitat:
Zitat von TomS Beitrag anzeigen
Zur Zustandsdichte: wenn ein endliches Voluemen vorliegt, dann ist ω diskret; wenn ein unendliches Volumen vorliegt und man lediglich einen endlichen Ausschnitt betrachtet, dann ist D(ω) ~ V ω² und ω ist nicht diskret. Damit ist die Gesamtzahl der Zustände ∫ dω D(ω) nicht endlich.
Das ist nicht richtig. Du betrachtest zwar nur einen endlichen Ausschnitt, zählst aber auch alle Zustände mit, die nicht in diesem Ausschnitt lokalisiert sind. Dieselben Zustände zählst du nochmal, wenn du einen benachbarten Ausschnitt "betrachtest", und unendlich oft, wenn du unendlich viele Auschnitte betrachtest. Das geht so nicht.
Fakt ist, dass du bei begrenzter Energie eine endliche Zustandsdichte hast. Damit ist die Anzahl möglicher Zustände in einem Volumen begrenzt.
Zitat:
Ja, die Zahl der Zustände bis zu einer festen Grenzenergie ist endlich, aber es gibt in einem kanonischen Ensemble keinen Grund, eine Grenzenergie anzunehmen.
Das kanonische Ensemle hat er doch nur in Zusammenhang mit seinen Protonenzuständen gebracht, um einer zwar konservative, aber nicht ganz so übertriebene Schätzung für die Zahl der Zustände zu haben. Ob das jetzt so zulässig ist oder nicht kann man diskutieren, aber das ändert nichts an der grundsätzlichen Aussage, die auf dem mikrokanonischen Ensemble beruht.
Es gibt einfach nur eine endliche Zustandsdichte, deswegen ist der Schluss auf die unendlich viele Kopien erlaubt, und die Anzahl möglicher Zustände im unendlichen ergodischen Universum ist abzählbar unendlich.
Zitat:
Ich halte die Argumentation für wenig überzeugend.
Was die Zahlenwerte angeht, vielleicht. Ich kann seine Abschätzung ehrlich gesagt nicht hundertprozentig nachvollziehen, da bräuchte ich ein paar Zeilen mehr, um auf die Sprünge zu kommen. Aber prinzipiell sehe ich keinen Anlass zur Beanstandung.
Mit Zitat antworten
Antwort

Lesezeichen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beiträge zu antworten.
Es ist Ihnen nicht erlaubt, Anhänge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 18:54 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2021, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm