Quanten.de Diskussionsforum  

Zurück   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Hinweise

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

Antwort
 
Themen-Optionen Ansicht
  #1  
Alt 22.06.11, 14:58
duabid duabid ist offline
Newbie
 
Registriert seit: 22.06.2011
Beiträge: 2
Standard Math - Rechenregeln Kommutatoren

Hi Leute!
Ich habe es schon mehrfach gesucht und vieles darüber gelesen (inklusive alte Beiträge im Forum), mir ist aber immer noch nicht klar, welche Rechenregeln, bei Kommutatoren gelten. In den Lösungen unserer Universität wird die Rechnung durchgeführt, ohne den Therm mit der Wellenfunktion zu multiplizieren. Es geht immer nur darum, zu bestimmten ob zwei Größen gleichzeitig scharf messbar sind. ich möchte an meinem Beispiel meine Fragen verdeutlichen:
Es soll der Kommutator von (die darstellung tut mir leid weiß nicht wie ich die sachen ausm formeleditor hierher importiere)
L: h/i*(z*dz-x*dz)
und Ekin= h^2/(2*m)dx^2
dz= partielle Ableitung nach z
dx2= zweite partielle ableitung nach x
ok ich beginne:
[L,Ekin]=
-h^3/(i*2*m)*(z*dx-x*dz)*dx^2+h^3/(2*m*i)*dx^2* (z*dx-x*dz)=



=-h^3/(2*m*i)*(z*dx*dx^2-x*dz*dx^2)+h^3/(2*m*i)*(dx^2*z*dx-dx^2*x*dz)


so nun : so wie ich es verstanden darf ich konstanten ausklammern, aber ableitungen und variablen dürfen ihre Reihenfolge nicht ändern.
Nun zu folgenden Thermen:
dx^2*z*dx-dx^2*x*dz) wenn ich z zweimal anch x ableite, muss doch null rauskommen oder? wenn ich aber dies konsequent durchziehen wuürde hätte ich auch
dx^2*x=0
und somit wäre der gesamte therm rechts neben dem plus null. Aber irgendwie kommt mir das komisch vor. Zudem weis ich nicht was ich noch mit dem linken Therm anfangen soll. Kann der weiter vereinfacht werden?

Ich wäre euch unendlich dankbar wenn mir einer von euch helfen könnte, denn ich schlag mich damit schon seit ewigkeiten rum.
Mit Zitat antworten
  #2  
Alt 22.06.11, 23:43
Hawkwind Hawkwind ist offline
Singularität
 
Registriert seit: 22.07.2010
Ort: Rabenstein, Niederösterreich
Beiträge: 2.059
Standard AW: Math - Rechenregeln Kommutatoren

Zitat:
Zitat von duabid Beitrag anzeigen
Hi Leute!
Ich habe es schon mehrfach gesucht und vieles darüber gelesen (inklusive alte Beiträge im Forum), mir ist aber immer noch nicht klar, welche Rechenregeln, bei Kommutatoren gelten. In den Lösungen unserer Universität wird die Rechnung durchgeführt, ohne den Therm mit der Wellenfunktion zu multiplizieren. Es geht immer nur darum, zu bestimmten ob zwei Größen gleichzeitig scharf messbar sind. ich möchte an meinem Beispiel meine Fragen verdeutlichen:
Es soll der Kommutator von (die darstellung tut mir leid weiß nicht wie ich die sachen ausm formeleditor hierher importiere)
L: h/i*(z*dz-x*dz)
der Term sieht falsch aus; es ist vermutlich die y-Komponenten des Drehimpulsoperators gemeint, und die wäre

L = (hquer/i) (z*d/dx - x*d/dz)

Dein erstes dz müsste in deiner Schreibweise also wohl ein dx sein, sieh z.B.
http://de.wikipedia.org/wiki/Drehimpulsoperator
Weiter unten passt es dann eh wieder, hast dich wohl nur vertippt.


Zitat:
Zitat von duabid Beitrag anzeigen
und Ekin= h^2/(2*m)dx^2
ich würde es eher so schreiben:

Ekin = (hquer^2/(2*m)) d^2/dx^2

(d.h. 2.Ableitung)


Was du beachten musst, sind eben die wohlbekannten Regeln der Differentiation und denk dir immer ganz rechts noch eine Funktion geschrieben, die von allen Koordinaten abhängt.

Natürlich gilt z.B.

d/dx*z = z*d/dx

weil es unabhängige Koordinaten sind. Aber z.B.

d/dx*x = 1 + x*d/dx

Das kommt von der Produktregel der Differentiation und denk dir ein f(x) ganz rechts. Dann entspräche das

d/dx (x*f(x)) = f(x) + x*d/dx f(x)

(u'v + uv')

Nun gehen wir zurück zur symbolischen Schreibweise und klammern f(x) nach rechts aus

d/dx (x*f(x)) = [1 + x*d/dx] f(x)

und lassen es schliesslich wieder weg:

d/dx * x = 1 + x*d/dx


Willst du so etwas wie

d^2/dx^2*x behandlen (x nach links "durchschieben"), dann musst du 2 mal nacheinander die Produktregel anwenden wegen 2. Ableitung.

Ableitungen nach verschiedenen Koordinaten vertauschen natürlich auch, z.B.

(d^2/dx^2) * (d/dz) = (d/dz) * (d^2/dx^2)

Ich hoffe, das war eine kleine Hilfe; deine Rechnung zu kontrollieren, habe ich heute nacht leider nicht mehr den rechten "Bock".
Mit Zitat antworten
  #3  
Alt 22.06.11, 23:57
Hawkwind Hawkwind ist offline
Singularität
 
Registriert seit: 22.07.2010
Ort: Rabenstein, Niederösterreich
Beiträge: 2.059
Standard AW: Math - Rechenregeln Kommutatoren

Zitat:
Zitat von duabid Beitrag anzeigen
dx^2*z*dx-dx^2*x*dz) wenn ich z zweimal anch x ableite, muss doch null rauskommen oder?
Das ist natürlich Unfug:

dx^2*z

steht ja für

dx^2 (z*f(x))

Für die Differentiation nach x ist z eine Konstante, kannst du also nach links durchschieben,

d/dx (c*f(x)) = c*d/dx f(x)

dein z ist bez. Ableitung nach x wie das "c".

Richig ist also
dx^2*z = z*dx^2

Ich sehe diesen Thread übrigens eher bei Quantenmechanik als in der Plauderecke.
Mit Zitat antworten
  #4  
Alt 27.06.11, 08:13
duabid duabid ist offline
Newbie
 
Registriert seit: 22.06.2011
Beiträge: 2
Standard AW: Math - Rechenregeln Kommutatoren

Das hat mir nun wirklich weitergeholfen. Damit kann ich weiter arbeiten. Vielen vielen dank !!
Mit Zitat antworten
Antwort

Lesezeichen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beiträge zu antworten.
Es ist Ihnen nicht erlaubt, Anhänge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 05:34 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2018, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm