Quanten.de Diskussionsforum  

Zurück   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Hinweise

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

Antwort
 
Themen-Optionen Ansicht
  #1  
Alt 08.03.10, 08:43
SCR SCR ist offline
Gesperrt
 
Registriert seit: 21.05.2009
Beiträge: 3.061
Standard Der Einstein-Lobachewski-Geschwindigkeitsraum

Hallo zusammen,

Bewegungen von Objekten erfolgen / beobachtet man in einem sogenannten Geschwindigkeitsraum.

Der Geschwindigkeitsraum weist eine hyperbolische Geometrie auf und kann nur in Einzelfällen und näherungsweise als euklidisch angenommen werden.

Die negative Krümmung des Geschwindigkeitsraums zeigt sich unter anderem in den Lorentz-Trafos:
Die speziellen Lorentz-Transformationen stellen in der vierdimensionalen Raum-Zeit keine Untergruppe dar.
Zeigen sich zwei Geschwindigkeiten hinsichtlich ihrer Richtungsvektoren nicht parallel, enthält ihr Produkt der speziellen Lorentz-Transformationen auf Grund der zugrundeliegenden hyperbolischen Geometrie stets eine Drehung.
Mit Zitat antworten
  #2  
Alt 08.03.10, 10:15
SCR SCR ist offline
Gesperrt
 
Registriert seit: 21.05.2009
Beiträge: 3.061
Standard AW: Der Einstein-Lobachewski-Geschwindigkeitsraum

Sollten dem ein oder anderen gegebenenfalls Aussagen wie diese hier unterkommen ...
Zitat:
Denn die Riemannsche und die Lobatschewski'sche Geometrie schliessen sich aufgrund ihrer verschiedenartigen Krümmung gegenseitig aus.
... sollte man den Wahrheitsgehalt genau prüfen (Was man ja eigentlich immer und grundsätzlich tun sollte ).
Die Riemann-Geometrie liegt der ART zu Grunde, die Lobachewski-Geometrie dem Geschwindigkeitsraum der SRT
-> Die oben konkret zitierte Aussage ist somit als falsch anzusehen.
Mit Zitat antworten
  #3  
Alt 08.03.10, 11:17
SCR SCR ist offline
Gesperrt
 
Registriert seit: 21.05.2009
Beiträge: 3.061
Standard AW: Der Einstein-Lobachewski-Geschwindigkeitsraum

Ein schönes Beispiel für das Zusammenspiel von elliptischer und hyperbolischer Geometrie in unserer Raumzeit stellen die dem hyperbolischen Exzess zugrundeliegende Wirkungsmechanismen dar.

(Hintergrund-Informationen bzw. weiterführend siehe
http://www.bernd-leitenberger.de/blo...lische-exzess/,
http://de.wikipedia.org/wiki/Swing-by,
http://www.bernd-leitenberger.de/swingby.shtml,
http://www.esa.int/esapub/bulletin/b...esbroek103.pdf)

Geändert von SCR (08.03.10 um 12:27 Uhr)
Mit Zitat antworten
  #4  
Alt 08.03.10, 19:02
Uli Uli ist offline
Singularität
 
Registriert seit: 01.05.2007
Beiträge: 1.798
Standard AW: Der Einstein-Lobachewski-Geschwindigkeitsraum

Zitat:
Zitat von SCR Beitrag anzeigen
Hallo zusammen,
Die speziellen Lorentz-Transformationen stellen in der vierdimensionalen Raum-Zeit keine Untergruppe dar.
Zeigen sich zwei Geschwindigkeiten hinsichtlich ihrer Richtungsvektoren nicht parallel, enthält ihr Produkt der speziellen Lorentz-Transformationen auf Grund der zugrundeliegenden hyperbolischen Geometrie stets eine Drehung.
Du willst vermutlich sagen, dass Lorentz-Boosts alleine keiner Gruppenalgebra genügen, denn 2 aufeinanderfolgende Boosts in unterschiedlichen Richtungen kombinieren nicht zu einem Boost, sondern zu einem Boost und einer Rotation (der sog. Wigner-Rotation). Aus diesem Grund sind auch die Rotationen Elemente der Lorentz- bzw. Poincare-Gruppe. (In der Poincare-Gruppe nimmt man auch noch die Translationen hinzu). Damit erhält man dann wieder Gruppeneigenschaften.

Das ist übrigens eine faszinierende und paradox anmutende Eigenschaft, die du da erwähnst: du beschleunigst kurz nach vorn und danach kurz nach rechts und als Folge davon hast du dich gedreht. Ich finde das nicht minder kontra-intuitiv als Längenkontraktion und Zeitdilatation.

Gruß,
Uli
Mit Zitat antworten
  #5  
Alt 08.03.10, 19:24
SCR SCR ist offline
Gesperrt
 
Registriert seit: 21.05.2009
Beiträge: 3.061
Standard AW: Der Einstein-Lobachewski-Geschwindigkeitsraum

Hi Uli,

ja. Und um vielleicht einmal ein wenig die Brücke zum DS zu schlagen: http://www.desy.de/~jlouis/Vorlesung...vortrag_15.pdf
Zitat:
Mit der sog. Wigner-Rotation (diese Bezeichnung benutzt man insbesondere im massiven Fall)
Zitat:
Da wir uns im Ruhesystem des Teilchens befinden, können wir den Drehimpuls nur als Spin (Intrinsische Eigenschaft) des Teilchens interpretieren.
Zitat:
λ nennt man die Helizität. Sie entspricht der Projektion des Gesamtdrehimpulses auf die Bewegungsrichtung. Da bei masselosen Teilchen der Begriff Spin (Drehimpuls im Ruhesystem) keinen Sinn macht, dient die Helizität als Ersatz für diesen. Der Betrag der Helizität bei masselosen Teilchen ist lorentzinvariant, aus diesem Grunde ist es sinnvoll, ihn als Charakterisierung (wie oben) von Teilchen zu benutzen.
Nebenbei: Kennst Du eine gute Quelle bezüglich der Thomas-Präzession?
Zitat:
Zitat von Uli Beitrag anzeigen
Das ist übrigens eine faszinierende und paradox anmutende Eigenschaft, die du da erwähnst: du beschleunigst kurz nach vorn und danach kurz nach rechts und als Folge davon hast du dich gedreht. Ich finde das nicht minder kontra-intuitiv als Längenkontraktion und Zeitdilatation.
Und widerspricht deshalb meines Erachtens der Reversibilität von Bewegungen (sofern die Geometrie nicht auch gleichzeitig "umgekehrt" wird).

Geändert von SCR (08.03.10 um 19:26 Uhr)
Mit Zitat antworten
  #6  
Alt 08.03.10, 22:05
SCR SCR ist offline
Gesperrt
 
Registriert seit: 21.05.2009
Beiträge: 3.061
Standard AW: Der Einstein-Lobachewski-Geschwindigkeitsraum

Was Besseres/Kompakteres wie das hier habe ich bisher nicht gefunden:
Zitat:
Man sieht, dass die Spinänderung einerseits von der Beschleunigung und damit vom nicht-gravitativen Kraftfeld abhängt (Thomas-Präzession), andererseits aber auch von der Geschwindigkeit.
Zitat:
Zitat von SCR Beitrag anzeigen
Die Reversibilität von Bewegungen ist meines Erachtens grundsätzlich mit Vorsicht zu genießen:
Ausgangspunkt: Ein Planet umkreist auf einer Umlaufbahn ein Zentralgestirn.
Diese Bewegung ist nicht reversibel:
1. Bei Umkehrung würde die Gravitation abstoßend wirken -> Der Planet verlässt die Umlaufbahn.
2. Selbst wenn wir die Gravitation weiterhin als anziehend ansehen würden:
In der Regel rotiert ein Planet und die Rotationsachse weist eine Neigung gegenüber der Ebene der Umlaufbahn auf.
Selbst im Falle einer weiterhin anziehend wirkenden Gravitation müsste man nun IMHO zunächst auch seine Achsenneigung spiegeln um die Reversibilität sicherzustellen.
3. Übertragen auf Quantenobjekte sollte das IMHO näherungsweise dem Äquivalent der Thomas-Präzession entsprechen (Anmerkung: Die Rotationsachse eines Körpers beeinflusst u.a. ja auch die Richtung entsprechender Emag-Felder).
Das hat durchaus auch mit der negativen Krümmung des Einstein-Lobachevski-Geschwindigkeitsraums zu tun - Sieht man unter anderem auch bei Lorentz-Trafos in entgegengesetzten Richtungen an deren Drehungen.

Geändert von SCR (08.03.10 um 22:09 Uhr)
Mit Zitat antworten
  #7  
Alt 08.03.10, 23:02
Uli Uli ist offline
Singularität
 
Registriert seit: 01.05.2007
Beiträge: 1.798
Standard AW: Der Einstein-Lobachewski-Geschwindigkeitsraum

Zitat:
Zitat von SCR Beitrag anzeigen
Die Reversibilität von Bewegungen ist meines Erachtens grundsätzlich mit Vorsicht zu genießen:
Ausgangspunkt: Ein Planet umkreist auf einer Umlaufbahn ein Zentralgestirn.
Diese Bewegung ist nicht reversibel:
1. Bei Umkehrung würde die Gravitation abstoßend wirken -> Der Planet verlässt die Umlaufbahn.
Was bedeutet zeitliche Reversibilität ?

Man hat ein Problem, z.B. das Kepler-Problem der Umkreisung eines Planeten um die Sonne. Du kennst eine Lösung dieses Problems (z.B. Kreisbewegung im Uhrzeigersinn). Du fragst dich dann, wenn du in der Lösung t durch -t ersetzt, ob das dann immer noch eine Lösung ist. t -> -t bedeutet aber, dass der Planet seine Umkreisung nun im Gegenuhrzeigersinn macht, was natürlich eine genauso gute Lösung des Kepler-Problems ist.
Mit Zitat antworten
  #8  
Alt 08.03.10, 23:26
SCR SCR ist offline
Gesperrt
 
Registriert seit: 21.05.2009
Beiträge: 3.061
Standard AW: Der Einstein-Lobachewski-Geschwindigkeitsraum

Hi Uli,
1. Du unterstellst auch bei -t eine weiterhin anziehend wirkende Gravitation.
Ist das korrekt?
2. Nehmen wir die Gravitation weiterhin als anziehend an.
Der Planet habe eine Eigenrotation (sagen wir im Uhzeigersinn) . Bei -t rotiert er dann dazu entgegengesetzt (also gegen den Uhrzeigersinn).
Da sehe ich jetzt noch kein Problem.
Seine Rotationsachse sei aber geneigt, wodurch sie sich beim Wechsel von +t auf -t als invers darstellt und IMHO auch "gespiegelt" werden müsste, um tatsächlich Reversibilität zu gewährleisten.

Nebenbei:
Die Keplersche Zwei-Körper-Lösung widerspricht der RT.
Das zweite Keplersche Gesetz ist im Kern nichts anderes als der Eulersche Drehimpulssatz (Das gefällt mir sehr gut ).
Das dritte kann mittels Hodogrammen direkt aus Newton abgeleitet werden - Und Hodos gibt's wiederum auch bei Lobachewski.
Mit Zitat antworten
  #9  
Alt 09.03.10, 11:42
Uli Uli ist offline
Singularität
 
Registriert seit: 01.05.2007
Beiträge: 1.798
Standard AW: Der Einstein-Lobachewski-Geschwindigkeitsraum

Zitat:
Zitat von SCR Beitrag anzeigen
Hi Uli,
1. Du unterstellst auch bei -t eine weiterhin anziehend wirkende Gravitation.
Ist das korrekt?
Unter Zeitumkehr versteht man in der Physik die Transformation

t -> -t

und sonst nichts: z.B. keine Annahmen, dass aus Anziehungen plötzlich Abstoßungen werden etc..

Zitat:
Zitat von SCR Beitrag anzeigen
Die Keplersche Zwei-Körper-Lösung widerspricht der RT.
Naja, ich würde so sagen: die Keplerschen Gesetze ergeben sich theoretisch aus der nichtrelativistischen Lösung des Kepler-Problems.

Bei Problemstellungen, für welche die nichtrelativistische Näherung unangemessen ist (z.B. extrem starke Gravitationsfelder, Black Holes oder relativistische Umlaufgeschwindigkeiten) macht man in Rahmen so einer Näherung natürlich Fehler - je wichtiger die relativistischen Effekte, desto größer der Fehler. Beim Kepler-Problem unseres Sonnensystems spielen relativistische Effekte ja zum Glück kaum eine Rolle; drum konnten die Keplerschen Gesetze auch schon vor Lösung des Kepler-Problems per Beobachtung gewonnen werden. Da machte sich besonders der Astronom Tycho Brahe verdient, falls mein Alzheimer mich nicht trügt.

Gruß,
Uli
Mit Zitat antworten
  #10  
Alt 09.03.10, 13:18
SCR SCR ist offline
Gesperrt
 
Registriert seit: 21.05.2009
Beiträge: 3.061
Standard AW: Der Einstein-Lobachewski-Geschwindigkeitsraum

Hi Uli,

Zeitumkehr bedeutet:
- Impulse kehren sich um (inkl. Drehimpulse / Spins)
- Geschwindigkeiten kehren sich um
- einlaufende und auslaufende Teilchen werden vertauscht
- Beschleunigungen kehren sich nicht um (aus v/t wird -v/-t)

Wo ich ein ganz dickes Fragezeichen dahinter setzen würde: Kehren sich Geometrien (konkret: Krümmungen) um?

1. Raumgeometrien:
Bei einer vorliegenden euklidischen Geometrie sehe ich keine Probleme -
Wie sieht das aber bei nicht-euklidischen Geometrien aus?
Die Eddington-Finkelstein-Lösung ist z.B. nicht zeitsymmetrisch.

2. Objektgeometrien:
Axial-Vektoren von Drehimpulsen/Spins ("Achsenneigungen") drehen sich nicht um, Polar-Vektoren schon ("Bewegungsrichtung") -> Auswirkungen?
Emag-Felder haben z.B. ihren Ursprung in den Pol-Koordinaten.

Und aus http://articles.adsabs.harvard.edu//...00165.000.html z.B.:
Zitat:
[...] schloß Riemann aus dem einen Vorzeichen der schweren Massen, daß die Differentialgleichung für das Gravitationsfeld selbst die Invarianz der physikalischen Gesetze gegenüber der Zeitumkehr brechen muß.
P.S.: Auch wenn der aktuell diskutierte Inhalt mit dem Threadtitel jetzt nicht mehr all zu viel zu tun hat interessantes Thema.

Geändert von SCR (09.03.10 um 13:21 Uhr)
Mit Zitat antworten
Antwort

Lesezeichen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beiträge zu antworten.
Es ist Ihnen nicht erlaubt, Anhänge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 14:02 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2019, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm