Quanten.de Diskussionsforum  

Zurück   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Hinweise

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

Antwort
 
Themen-Optionen Ansicht
  #1  
Alt 01.05.19, 18:03
Timm Timm ist offline
Singularität
 
Registriert seit: 26.03.2009
Ort: Weinstraße, Rheinld.Pfalz
Beiträge: 2.634
Standard Problem mit der Lösung des Flachheitsproblems

Die Inflation löst das Flachheitsproblem dadurch, daß in

(1/Ω - 1)ρa² = -k*3c²/(8piG)

ρa² wegen der exponentiellen Expansion einen riesigen Wert erhält und deshalb (1/Ω - 1) -> 0 geht. (1/Ω - 1) = 0 bedeutet Ω = 1 und damit wäre das Universum räumlich flach und k = 0.

Nun schreibt Wikipedia:

https://en.wikipedia.org/wiki/Flatness_problem
Zitat:
Thus if |(1/Ω - 1)| initially takes any arbitrary value, a period of inflation can force it down towards 0 and leave it extremely small - around 10^-62 as required above, for example.
Demnach wird z.B. aus einem anfänglichen (vor Beginn der Inflation) Wert Ω > 1 (Universum hat sphärische Geometrie, k = +1) der Wert Ω = 0 (Universum hat euklidische Geometrie, k = 0).

Andererseits sollte sich das Vorzeichen des Krümmungsparameters k durch die Inflation nicht ändern, aus sphärisch nicht flach werden.
Wo liegt die Crux?
__________________
Der Verstand schafft die Wahrheit nicht, sondern er findet sie vor - Aurelius Augustinus
Mit Zitat antworten
  #2  
Alt 01.05.19, 19:37
Benutzerbild von TomS
TomS TomS ist offline
Singularität
 
Registriert seit: 04.10.2014
Ort: Nürnberg
Beiträge: 2.102
Standard AW: Problem mit der Lösung des Flachheitsproblems

Aus einer kompakten (z.B. sphärischen) kann auch keine offene (z.B. euklidische) Topologie werden (Geometrie in Klammern).
__________________
Niels Bohr brainwashed a whole generation of theorists into thinking that the job (interpreting quantum theory) was done 50 years ago.
Mit Zitat antworten
  #3  
Alt 01.05.19, 22:56
Timm Timm ist offline
Singularität
 
Registriert seit: 26.03.2009
Ort: Weinstraße, Rheinld.Pfalz
Beiträge: 2.634
Standard AW: Problem mit der Lösung des Flachheitsproblems

Zitat:
Zitat von TomS Beitrag anzeigen
Aus einer kompakten (z.B. sphärischen) kann auch keine offene (z.B. euklidische) Topologie werden (Geometrie in Klammern).
Eben, das Vorzeichen von k kann vor der Inflation nicht anders sein, als nachher. Andererseits läßt “arbitrary value” k = 1 zu.
__________________
Der Verstand schafft die Wahrheit nicht, sondern er findet sie vor - Aurelius Augustinus

Geändert von Timm (01.05.19 um 23:02 Uhr)
Mit Zitat antworten
  #4  
Alt 02.05.19, 07:58
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.764
Standard AW: Problem mit der Lösung des Flachheitsproblems

Aus Wikipedia:
Zitat:
k may be taken to have units of length−2, in which case r has units of length and a(t) is unitless. k is then the Gaussian curvature of the space at the time when a(t) = 1. r is sometimes called the reduced circumference because it is equal to the measured circumference of a circle (at that value of r), centered at the origin, divided by 2π (like the r of Schwarzschild coordinates). Where appropriate, a(t) is often chosen to equal 1 in the present cosmological era, so that d Σ {\displaystyle \mathrm {d} \mathbf {\Sigma } } \mathrm{d}\mathbf{\Sigma} measures comoving distance.
Alternatively, k may be taken to belong to the set {−1,0,+1} (for negative, zero, and positive curvature respectively). Then r is unitless and a(t) has units of length. When k = ±1, a(t) is the radius of curvature of the space, and may also be written R(t).
Wenn du mit k=1 arbeitest, dann ist k/a² die Krümmung, und die wird beliebig klein. Wenn da steht, die Krümmung werde gegen 0 getrieben, dann bezieht sich das auf k/a².
Mit Zitat antworten
  #5  
Alt 02.05.19, 11:15
Timm Timm ist offline
Singularität
 
Registriert seit: 26.03.2009
Ort: Weinstraße, Rheinld.Pfalz
Beiträge: 2.634
Standard AW: Problem mit der Lösung des Flachheitsproblems

Zitat:
Zitat von Ich Beitrag anzeigen
Aus Wikipedia:
Wenn du mit k=1 arbeitest, dann ist k/a² die Krümmung, und die wird beliebig klein. Wenn da steht, die Krümmung werde gegen 0 getrieben, dann bezieht sich das auf k/a².
Dann habe ich eine riesige Sphäre und Ω wird gegen 1 getrieben. Ich hatte die Lösung des Flachheitsproblems so verstanden, daß Ω = 1 resultiert, mit k = 0. Und ich denke so müßten es diejenigen Kosmologen verstehen, die von einem unendlich großen Universum ausgehen, also keiner auch noch so große Sphäre.

Es ist überall die Rede davon, daß das Universum räumlich flach ist, was die Sphäre eigentlich ausschließt. Wenn das aber strikt gilt, müßte es schon vor der Inflation flach gewesen sein und damit die Inflation unnötig.
__________________
Der Verstand schafft die Wahrheit nicht, sondern er findet sie vor - Aurelius Augustinus
Mit Zitat antworten
  #6  
Alt 02.05.19, 11:44
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.764
Standard AW: Problem mit der Lösung des Flachheitsproblems

Zitat:
Zitat von Timm Beitrag anzeigen
Dann habe ich eine riesige Sphäre und Ω wird gegen 1 getrieben. Ich hatte die Lösung des Flachheitsproblems so verstanden, daß Ω = 1 resultiert, mit k = 0.
Nein, eher wie in der von dir zitierten Quelle Ω-1~1e-62 oder so. 0 ist nur der Limes.
Zitat:
Und ich denke so müßten es diejenigen Kosmologen verstehen, die von einem unendlich großen Universum ausgehen, also keiner auch noch so große Sphäre.
Ich denke, dass solch Redeweisen noch Überbleibsel aus der Ära vor 30 Jahren sind, als man zwischen dem tatsächlichen Universum und einer einfachen FRW-Metrik sprachlich keinen Unterschied machte.
Zitat:
Es ist überall die Rede davon, daß das Universum räumlich flach ist, was die Sphäre eigentlich ausschließt. Wenn das aber strikt gilt, müßte es schon vor der Inflation flach gewesen sein und damit die Inflation unnötig.
Es gilt nicht strikt. Es gilt auch die FRW-Metrik nicht strikt: Lokal mag vor der Inflation positive Krümmung geherrscht haben, anderswo negative - das sagt nichts über die globale Topologie aus. Aber was immer die lokale Krümmung war, sie wurde gegen Null (aber nicht auf exakt Null) gebügelt.

Geändert von Ich (02.05.19 um 11:48 Uhr)
Mit Zitat antworten
  #7  
Alt 02.05.19, 15:18
Timm Timm ist offline
Singularität
 
Registriert seit: 26.03.2009
Ort: Weinstraße, Rheinld.Pfalz
Beiträge: 2.634
Standard AW: Problem mit der Lösung des Flachheitsproblems

Zitat:
Zitat von Ich Beitrag anzeigen
Es gilt nicht strikt. Es gilt auch die FRW-Metrik nicht strikt: Lokal mag vor der Inflation positive Krümmung geherrscht haben, anderswo negative - das sagt nichts über die globale Topologie aus. Aber was immer die lokale Krümmung war, sie wurde gegen Null (aber nicht auf exakt Null) gebügelt.
Hat dann k lokal unterschiedliche Vorzeichen, vor und nach der Inflation jeweils dasselbe? Macht ein Wert von k lokal überhaupt Sinn?

Ergibt sich der globale Wert von k aus einer Art Mittelung? Wenn etwa die lokal positiven Krümmungen überwiegen ist global k = 1?

Wenn ich das soweit richtig verstehe, ist nach der Inflation das Universum lokal nahezu flach, was aber nichts über die globale Geometrie aussagt, die ist heute so wie sie vor der Inflation war. D.h. wer heute von global k = 0 ausgeht, braucht dafür keine Inflation. Das würde aber alles bedeuten, daß in unserem beobachtbaren Universum lokal nahezu flach - wie derzeit angenommen - keineswegs global exakt flach nahelegt.
__________________
Der Verstand schafft die Wahrheit nicht, sondern er findet sie vor - Aurelius Augustinus
Mit Zitat antworten
  #8  
Alt 02.05.19, 16:23
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.764
Standard AW: Problem mit der Lösung des Flachheitsproblems

Zitat:
Zitat von Timm Beitrag anzeigen
Hat dann k lokal unterschiedliche Vorzeichen, vor und nach der Inflation jeweils dasselbe?
Die lokale Krümmung nach der Inflation kommt aus den Fluktuationen des Inflatonfelds. Was vorher war, sollte keinen nennenswerten Einfluss darauf haben.
Zitat:
Macht ein Wert von k lokal überhaupt Sinn?
Bedingt Man kann natürlich lokal einen Schnittkrümmungsradius definieren und sogar messen - wobei der natürlich immer positiv wäre. Der kosmologische Krümmungsradius ist wieder was anderes, weil der nur in der FRW-Metrik vorkommt und für seine Definition die Gültigkeit des Hubblgesetzes voraussetzt. Um den zu bestimmen, muss man also über Regionen mitteln, die groß genug sind, dass man näherungsweise eine solche Metrik darüberlegen kann. Wenn man das macht, muss nicht zwangsweise überall dasselbe herauskommen.
Zitat:
Ergibt sich der globale Wert von k aus einer Art Mittelung? Wenn etwa die lokal positiven Krümmungen überwiegen ist global k = 1?
Wenn man so will, ja. Eigentlich ist k eine Eigenschaft der FRW-Metrik, nicht des tatsächlichen Universums. Wenn das Universum auf den größten Skalen nicht homogen ist, dann gibt es auch kein vernünfitges globales k. Wenn aber die positive Krümmung überwiegt, dann ist die Topologie kompakt.
Zitat:
Wenn ich das soweit richtig verstehe, ist nach der Inflation das Universum lokal nahezu flach, was aber nichts über die globale Geometrie aussagt, die ist heute so wie sie vor der Inflation war. D.h. wer heute von global k = 0 ausgeht, braucht dafür keine Inflation. Das würde aber alles bedeuten, daß in unserem beobachtbaren Universum lokal nahezu flach - wie derzeit angenommen - keineswegs global exakt flach nahelegt.
Allein schon für global k~=0 braucht man die Inflation, weil die Nullkrümmung instabil ist und irgendwie erzwungen werden muss. Wenn man von global k=0 ausgeht, ist immer noch nicht geklärt, wie das zustande kommen soll - die einzelnen Regionen des Universums waren ja nicht in kausalem Kontakt miteinander ohne Inflation.
Allgemein gilt natürlich: Wir wissen nur, wie unser beobachtbares Universum aussieht. Was auf millionenfach größeren Skalen (so es die gibt) passiert, entzieht sich unserer Kenntnis. Es gibt auch keine stichfesten theoretischen Argumente, warum das Universum als Ganzes genau so aussehen sollte wie unser beobachtbares Teilstück.

Geändert von Ich (02.05.19 um 16:26 Uhr)
Mit Zitat antworten
  #9  
Alt 02.05.19, 17:38
Timm Timm ist offline
Singularität
 
Registriert seit: 26.03.2009
Ort: Weinstraße, Rheinld.Pfalz
Beiträge: 2.634
Standard AW: Problem mit der Lösung des Flachheitsproblems

Zitat:
Zitat von Ich Beitrag anzeigen
Die lokale Krümmung nach der Inflation kommt aus den Fluktuationen des Inflatonfelds. Was vorher war, sollte keinen nennenswerten Einfluss darauf haben.
Du meinst hier wohl mit lokal die Anisotropie des CMB bei ca. 1° Winkelausdehnung. Diese Dichteschwankungen führt man auf solche Fluktuationen zurück, wobei 1° annähernd flach ergibt.
Mit "Hat dann k lokal unterschiedliche Vorzeichen, vor und nach der Inflation jeweils dasselbe?" meinte ich das beobachtbare Universum. Mit lokal in diesem Sinne sollte die Krümmung gegen Null gehen, ihr Vorzeichen aber beibehalten.

Zitat:
Zitat von Ich Beitrag anzeigen
Allein schon für global k~=0 braucht man die Inflation, weil die Nullkrümmung instabil ist und irgendwie erzwungen werden muss.
Ja.

Zitat:
Zitat von Ich Beitrag anzeigen
Wenn man von global k=0 ausgeht, ist immer noch nicht geklärt, wie das zustande kommen soll - die einzelnen Regionen des Universums waren ja nicht in kausalem Kontakt miteinander ohne Inflation.
Spielt das eine Rolle?
Das beobachtbare Universum war vor der Inflation in kausalem Kontakt. Trotzdem geht man für es von k~=0 aus, nicht von k=0.

Ob in kausalem Kontakt oder nicht sollten nach der Inflation die anfänglich unterschiedlichen lokalen Krümmungen gegen Null gehen, bzw. Ω -> 1 aber nicht Ω = 1. Ich denke, wenn es so ist, sollte das auch global gelten.

Das Resümee dürfte sein, daß die Inflation weder lokal noch global k = 0 erzwingt.
__________________
Der Verstand schafft die Wahrheit nicht, sondern er findet sie vor - Aurelius Augustinus
Mit Zitat antworten
  #10  
Alt 02.05.19, 19:08
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.764
Standard AW: Problem mit der Lösung des Flachheitsproblems

Zitat:
Zitat von Timm Beitrag anzeigen
Spielt das eine Rolle?
Das beobachtbare Universum war vor der Inflation in kausalem Kontakt. Trotzdem geht man für es von k~=0 aus, nicht von k=0.
Ohne Inflation würde ein solcher Bereich aber nicht das beobachtbare Universum füllen.
Zitat:
Ob in kausalem Kontakt oder nicht sollten nach der Inflation die anfänglich unterschiedlichen lokalen Krümmungen gegen Null gehen, bzw. Ω -> 1 aber nicht Ω = 1. Ich denke, wenn es so ist, sollte das auch global gelten.
Es ist ja auch denkbar, dass unser Universum quasi aus einer Inflationsblase in einem viel größeren Universum hervorgegangen ist. Oder dass - siehe "Eternal Inflation" - die Inflation nicht in allen Bereichen des Universums zum Erliegen gekommen ist. Da kann man, momentan zumindest, nur spekulieren.
Zitat:
Das Resümee dürfte sein, daß die Inflation weder lokal noch global k = 0 erzwingt.
Nicht im mathematischen Sinne, nein.
Mit Zitat antworten
Antwort

Lesezeichen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beiträge zu antworten.
Es ist Ihnen nicht erlaubt, Anhänge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 13:37 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2019, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm