Quanten.de Diskussionsforum  

Zurück   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Hinweise

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

Antwort
 
Themen-Optionen Ansicht
  #11  
Alt 10.07.19, 09:04
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.762
Standard AW: ART, Riemann Manigfaltigkeit, Anzahl Dimension

Zitat:
Zitat von future06 Beitrag anzeigen
Anders fomuliert: wenn ein physikalisches Objekt O (in diesem Fall die gekrümmte 4D-Raumzeit der ART) gleichwertig durch U und durch R beschrieben werden kann, muss die tatsächliche Dimension von O der Dimension von U entsprechen, weil U die "natürliche bzw. "kanonische?" Beschreibung ist.
Nein. Einbettungen haben beliebig viele Freiheitsgrade, die keine Auswirkungen auf die Unterräume haben. In anderen Worten, zu einem R können unendlich viele U existieren. An den U ist nichts kanonisches. Da alle Physik nur von der intrinsischen Geometrie abhängt, sind die R kanonisch.


Beispiel: Eine (intrinsisch flache) Ebene kann auf beliebig viele Arten in drei Dimensionen gebogen werden, ohne sie zu verzerren. Kannst du jederzeit mit einem Blatt Papier ausprobieren.
Mit Zitat antworten
  #12  
Alt 10.07.19, 13:01
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beiträge: 1.254
Standard AW: ART, Riemann Manigfaltigkeit, Anzahl Dimension

Zitat:
Zitat von Ich Beitrag anzeigen
Beispiel: Eine (intrinsisch flache) Ebene kann auf beliebig viele Arten in drei Dimensionen gebogen werden, ohne sie zu verzerren. Kannst du jederzeit mit einem Blatt Papier ausprobieren.
Ein Beispiel dafür ist die Zylinderfläche. Diese ist laut riemannscher Geometrie flach, obwohl sie gebogen ist. Die Oberfläche einer Kugel ist dagegen gekrümmt.
__________________
Freundliche Grüße, B.

Überhaupt droht ja jedem universelle Geltung heischenden Ansatz die Sphinx der modernen Physik, die Quantentheorie - T. Kaluza, 1921
Mit Zitat antworten
  #13  
Alt 10.07.19, 15:35
Timm Timm ist offline
Singularität
 
Registriert seit: 26.03.2009
Ort: Weinstraße, Rheinld.Pfalz
Beiträge: 2.619
Standard AW: ART, Riemann Manigfaltigkeit, Anzahl Dimension

Der 2-Torus ist ebenfalls flach. Wie läßt er sich aus Papier ohne Zerreißen herstellen?
__________________
Der Verstand schafft die Wahrheit nicht, sondern er findet sie vor - Aurelius Augustinus
Mit Zitat antworten
  #14  
Alt 10.07.19, 17:08
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beiträge: 1.254
Standard AW: ART, Riemann Manigfaltigkeit, Anzahl Dimension

Zitat:
Zitat von Timm Beitrag anzeigen
Der 2-Torus ist ebenfalls flach. Wie läßt er sich aus Papier ohne Zerreißen herstellen?
Das ist doch ein Beispiel, wo der Einbettungsraum vier Dimensionen benötigt? Die Bezeichnung 2-Torus ist deshalb auch irreführend. Ich stelle mir unter "2-Torus" eher die Donut-Fläche vor und die ist gekrümmt.
__________________
Freundliche Grüße, B.

Überhaupt droht ja jedem universelle Geltung heischenden Ansatz die Sphinx der modernen Physik, die Quantentheorie - T. Kaluza, 1921
Mit Zitat antworten
  #15  
Alt 10.07.19, 17:09
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.762
Standard AW: ART, Riemann Manigfaltigkeit, Anzahl Dimension

Beide Beispiele sind richtig, haben aber nichttriviale Topologie, also nicht R². Sie unterscheiden sich also von der Ausgangsebene.
Wichtig für mein Argument ist, dass man unendlich viele unterschiedeliche Einbettungen finden kann, die sich intrinsisch in gar nichts vom Original unterscheiden.
Mit Zitat antworten
  #16  
Alt 11.07.19, 09:23
future06 future06 ist offline
Profi-Benutzer
 
Registriert seit: 11.01.2010
Beiträge: 112
Standard AW: ART, Riemann Manigfaltigkeit, Anzahl Dimension

Zitat:
Zitat von Ich Beitrag anzeigen
Nein. Einbettungen haben beliebig viele Freiheitsgrade, die keine Auswirkungen auf die Unterräume haben. In anderen Worten, zu einem R können unendlich viele U existieren. An den U ist nichts kanonisches. Da alle Physik nur von der intrinsischen Geometrie abhängt, sind die R kanonisch.


Beispiel: Eine (intrinsisch flache) Ebene kann auf beliebig viele Arten in drei Dimensionen gebogen werden, ohne sie zu verzerren. Kannst du jederzeit mit einem Blatt Papier ausprobieren.
Zitat:
Zitat von Bernhard Beitrag anzeigen
Ein Beispiel dafür ist die Zylinderfläche. Diese ist laut riemannscher Geometrie flach, obwohl sie gebogen ist. Die Oberfläche einer Kugel ist dagegen gekrümmt.
OK, das ist soweit einsichtig und klar.

Es gibt also beliebig viele (laut Riemann-Geometrie) flache Objekte, zB. die Zylinderfläche, die zwar einen höherdimensionionalen Einbettungsram benötigen (in diesem Fall 3D), aber trotzdem intrinsisch 2D sind.

Nicht flache, also laut Riemann-Geometrie gekrümmte, Objekte, die einen höherdimensionalen Einbettungsraum benötigen (zB. die Kugeloberfläche) müssten aber m.E. intrinsisch 3D sein, obwohl sie nur mit einer 2D-Riemann-Geometrie beschrieben werden. Weil sie nicht verzerrungsfrei auf die niedrige Dimension (in diesem Fall 2D) zurückgeführt werden können.

Das ist der Punkt, auf den ich hinaus will. Denn dies würde bedeuten, dass die gekrümmte 4D-Raumzeit intrinsisch 5-dimensional ist.
Mit Zitat antworten
  #17  
Alt 11.07.19, 10:04
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beiträge: 1.254
Standard AW: ART, Riemann Manigfaltigkeit, Anzahl Dimension

Zitat:
Zitat von future06 Beitrag anzeigen
Nicht flache, also laut Riemann-Geometrie gekrümmte, Objekte, die einen höherdimensionalen Einbettungsraum benötigen (zB. die Kugeloberfläche) müssten aber m.E. intrinsisch 3D sein, obwohl sie nur mit einer 2D-Riemann-Geometrie beschrieben werden. Weil sie nicht verzerrungsfrei auf die niedrige Dimension (in diesem Fall 2D) zurückgeführt werden können.
Wenn man die gekrümmte Oberfläche (z.B. Kugeloberfläche) und deren Eigenschaften komplett in 2D beschreiben kann, so zeigt das doch eher, dass dem Einbettungsraum keine wesentliche Bedeutung zukommt.

Man kann die Kugeloberfläche ja z.B. auch in einen zehndimensionalen euklidischen Raum isometrisch einbetten, ohne dass sich an den Eigenschaften der Kugelfläche irgendetwas ändert. Die Dimension des Einbettungsraumes ist damit, abgesehen von N >= 3, frei wählbar.

BTW: Bist Du Science-Fiction-Fan ?
__________________
Freundliche Grüße, B.

Überhaupt droht ja jedem universelle Geltung heischenden Ansatz die Sphinx der modernen Physik, die Quantentheorie - T. Kaluza, 1921
Mit Zitat antworten
  #18  
Alt 11.07.19, 11:31
future06 future06 ist offline
Profi-Benutzer
 
Registriert seit: 11.01.2010
Beiträge: 112
Standard AW: ART, Riemann Manigfaltigkeit, Anzahl Dimension

Zitat:
Zitat von Bernhard Beitrag anzeigen
BTW: Bist Du Science-Fiction-Fan ?
Bin kein Science-Fiction Fan, zumindest kein außergewöhlich fanatischer
Schon klar, dass die Hyper-Raum-Analogie aus diversen Science-Fictions auf dieser Idee beruht, aber das ist nicht mein Motiv. Ich bin die letzten Jahre eher philosophisch interessiert, deswegen geht es mir um die grundsätzliche Frage nach der Ontologie von physikalischen Theorien.


Zitat:
Zitat von Bernhard Beitrag anzeigen
Wenn man die gekrümmte Oberfläche (z.B. Kugeloberfläche) und deren Eigenschaften komplett in 2D beschreiben kann, so zeigt das doch eher, dass dem Einbettungsraum keine wesentliche Bedeutung zukommt.

Man kann die Kugeloberfläche ja z.B. auch in einen zehndimensionalen euklidischen Raum isometrisch einbetten, ohne dass sich an den Eigenschaften der Kugelfläche irgendetwas ändert. Die Dimension des Einbettungsraumes ist damit, abgesehen von N >= 3, frei wählbar.
Gut, deswegen habe ich anfangs bereits geschrieben, dass die mathematische Struktur der ART und somit auch der Realität mindestens 5-dimensional sein müsste. Über weitere Dimesionen möchte ich auch nicht spekulieren

Rein formal ist mir schon klar, dass die Riemann-Mannigfaltigkeit der ART (im Sinne der mathematischen Formulierung) 4-dimensional ist. Aber ich denke halt, dass die 5. Dim. irgendwie versteckt bzw. implizit darin vorkommt.

Viellleich nochmal eine Analogie: Man nehme ein reales physikalisches Objekt, zB. eine Billiardkugel. Dann läßt sich ihre Oberfläche mit einem 3D-Vektorraum mathematisch vollständig beschreiben. Alternativ kann man (m.E. mathematisch gleichwertig/gleichbedeutend) die Oberfläche mit einer 2D-Riemann Differentialgeometrie beschreiben. Es bleibt dann aber weiterhin die Oberfläche eines realen 3D-Objektes, d.h. die 3. Dim. verschwindet ja nicht, nur weil man mathematisch eine mögliche 2D-Beschreibung zur Verfügung hat.

Man kann also m.E. nicht argumentieren, dass die gekrümmte Raumzeit 4-dimensional ist nur weil eine geeignete mathematische Struktur zur Beschreibung dieser Raumzeit 4-dimensionalen Charakter hat.
Mit Zitat antworten
  #19  
Alt 11.07.19, 14:16
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beiträge: 1.254
Standard AW: ART, Riemann Manigfaltigkeit, Anzahl Dimension

Zitat:
Zitat von future06 Beitrag anzeigen
Aber ich denke halt, dass die 5. Dim. irgendwie versteckt bzw. implizit darin vorkommt.
Das hängt davon ab, was man unter "implizit" versteht.

In den einführenden Standardwerken und-schriften zum Standardmodell der Kosmologie findet man zumindest nichts von einer fünften Dimension.

Darüberhinaus gibt es noch das etwas bekanntere RS-Modell: https://de.wikipedia.org/wiki/Randall-Sundrum-Modell
__________________
Freundliche Grüße, B.

Überhaupt droht ja jedem universelle Geltung heischenden Ansatz die Sphinx der modernen Physik, die Quantentheorie - T. Kaluza, 1921
Mit Zitat antworten
Antwort

Lesezeichen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beiträge zu antworten.
Es ist Ihnen nicht erlaubt, Anhänge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 00:02 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2019, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm