Quanten.de Diskussionsforum  

Zurück   Quanten.de Diskussionsforum > Quantenmechanik, Relativitätstheorie und der ganze Rest.

Quantenmechanik, Relativitätstheorie und der ganze Rest. Wenn Sie Themen diskutieren wollen, die mehr als Schulkenntnisse voraussetzen, sind Sie hier richtig. Keine Angst, ein Physikstudium ist nicht Voraussetzung, aber man sollte sich schon eingehender mit Physik beschäftigt haben.

Antwort
 
Themen-Optionen Ansicht
  #1  
Alt 24.08.17, 10:03
mojorisin mojorisin ist offline
Newbie
 
Registriert seit: 16.05.2016
Beiträge: 9
Standard Achsenwinkel bei 3D Minkowski Diagramm

Folgende Situation:

Bob sitzt im Raumschiff un sieht auf seiner y-Achse einen Ball mit 10 m/s zwischen zwei Spiegeln im Abstand von 5m hin- und herpendeln, d.h. seine Uhr hat eine Frequenz von 1Hz. Nun sieht Alice Bob's Raumschiff mit 0,9c auf der x-Achse dahinfliegen.

Dieser Sachverhalt ist eigentlich recht anschaulich darstellbar im Minkowski-Diagramm. Dabei werden die Winkel z.B. zwischen ct und ct' berechnet nach



Das heißt die Zeitdilatation ergibt sich aus dem Gesamtgeschwindigkeitsvektor (auch wenn man hier die 10m/s vernachlässigen könnte). Stimmt das so?

Meine nächste Frage: Wie werden die Winkel der einzelnen Raumdimensionen gedreht? Hängen die nur ab von der Geschwindigkeitskomponente des beobachtenen System bezogen auf die entsprechende Raumdimension? Das müsste meines Erachtens ja so sein denn die y-Komponenten im ensprechenden Beipiel sind ja y = y'.

Mein Fazit wäre daher das der Betrag des Winkels zwischen ct und ct' = der Summe der Winkel der Raumdimensionen ist. Also fürs 4D-Diagramm:



was sich ja eigentlich schon logisch ergibt wenn man bedenkt das 4D Linienelement invariant sein unter der LT muss.

DIe Frage kommt auf, weil ich nun viele Bücher durchgegangen bin und das Minkowski-Diagramm meist nur in 2D erklärt wird. Dann wird immer davon ausgegangen das die Winkel zwischen ct und ct' sowie x und x' gleichgroß sind was aber meines Erachtens nicht gelten muss für Projekionen auf eine Achse in einem 3D Diagramm. Für ein 3D Diagramm werden dann aber keine Winkelberechnungen angegeben.

Um auf das Eingührungsbeipiel zurückzukommen, war meine Idee den Schnitt der ct und y Achse darzustellen wobei dann ct' gedreht ist y' aber nicht. Das würde helfen zu verstehen warum man eine Zeitdilatation in y-Richtung hat aber keine Längenkontraktion. Mittlerweile bin ich mir aber nicht mehr sicher ob das so richtig ist.
Mit Zitat antworten
  #2  
Alt 24.08.17, 19:16
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beiträge: 253
Standard AW: Achsenwinkel bei 3D Minkowski Diagramm

Hallo mojorisin,

Zitat:
Zitat von mojorisin Beitrag anzeigen
Bob sitzt im Raumschiff un sieht auf seiner y-Achse einen Ball mit 10 m/s zwischen zwei Spiegeln im Abstand von 5m hin- und herpendeln, d.h. seine Uhr hat eine Frequenz von 1Hz. Nun sieht Alice Bob's Raumschiff mit 0,9c auf der x-Achse dahinfliegen.
ich würde die Aufgabe etwas umformulieren ohne dabei den Inhalt zu verändern, damit man keine lästigen Minuszeichen berücksichtigen muss. Lass' besser Bob in dem ruhenden System den Ball betrachten und setze Alice in das Raumschiff.

Bobs Weltlinie startet dann im Ursprung des Minkowski-Diagramms und läuft genau parallel zur t-Achse. Die Weltlinie des Balls startet im gleichen Punkt wie Bobs Weltlinie, bildet aber eine Sägezahnlinie entlang der t-Achse. Der y-Wert nimmt dabei periodisch zu und wieder ab.

Ferner sieht Bob Alices Raumschiff mit 0,9c auf der x-Achse dahinfliegen. Das gestrichene Alice-System hat damit eine gekippte t'- und x'-Achse. Der Winkel zwischen der t und der t'-Achse ist gleich alpha. Der Winkel zwischen der x und der x'-Achse ist ebenfalls gleich alpha. alpha kennst Du, weil Du die korrekte Formel dazu angegeben hast.

Jetzt kann man Ereignisse auf der Weltlinie des Balls in das Alice-System übertragen.

Dass der Ball in y-Richtung hüpft macht die Sache natürlich nicht einfacher. Du könntest also zur Übung vorab den Ball erst mal in x-Richtung hüpfen lassen und dann geeignete Ereignisse auf dieser Weltlinie in das Alice-System übertragen, um zu testen, ob Du mit Minkowski-Diagrammen korrekt rechnen kannst. Wenn das klappt, kannst Du den Ball auch in y-Richtung hüpfen lassen.

EDIT: Die y'-Achse ist parallel zur y-Achse. Die z'-Achse ist parallel zur z-Achse.

Da Bob genaugenommen eine Uhr betrachtet, sollte es egal sein, in welche Richtung der Ball hüpft. Alice sollte immer den gleichen Dilatationsfaktor messen. Um den Dilatationsfaktor auszurechnen muss man zwei eindeutig definierte Ereignisse auf der t-Achse in das System von Alice transformieren.
__________________
Freundliche Grüße, B.

Geändert von Bernhard (24.08.17 um 22:33 Uhr)
Mit Zitat antworten
  #3  
Alt 25.08.17, 10:03
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.354
Standard AW: Achsenwinkel bei 3D Minkowski Diagramm

Die X-Achse ist, räumlich gesehen, auch deckungsgleich mit der X'-Achse. Der "Winkel" zwischen X und X' ist in Zeitrichtung!
Mit Zitat antworten
  #4  
Alt 25.08.17, 12:31
mojorisin mojorisin ist offline
Newbie
 
Registriert seit: 16.05.2016
Beiträge: 9
Standard AW: Achsenwinkel bei 3D Minkowski Diagramm

Hallo Bernhard und Ich,

Danke für eure Antworten. Ich denke mein Problem lag darin dass ich versucht habe die ct'-y'-Ebene auf die ct-y-Ebene abbzubilden und das nicht richtig hinbekommen habe. Dabei war mir nicht klar wie sich die ct'-Achse darstellen lässt da sie ja eigentlich in den "Raum" hineingekippt ist.

Aber ich denke ich habs jetzt verstanden. Das invariante Linienelement ergibt sich ja aus der Diagonalen des entsprechenden Elements. D.h. im 2D Diagramm aus der Diagnolen eines Quadrats im Ruhesystem bzw. eines Parallelogramms im relativ bewegten System wie im unteren Bild:



Erweiteret man das Diagramm zum 3D Diagram erhält man das Linienelement als Diagonale im enstrechenden Würfel (Ruhesystem) oder im entsprechenden Parallelepiped im relativ bewegten System


In EIngangspost beschrieben Fall ist die y'-Achse senkrecht zur ct' Achse da die Geschwindigkeit nur 10 m/s beträgt während die ct'-Achse und die x'-Achse einen Winkel <90° einschließen. Man könnte jetzt hier die Abbildung machen von der ct'-y'-Fläche auf die ct-y-Fläche und würde sehen das wie erwartet Abstände von ct'>ct sind ist wobei y' = y ist.
Mit Zitat antworten
  #5  
Alt 25.08.17, 12:57
mojorisin mojorisin ist offline
Newbie
 
Registriert seit: 16.05.2016
Beiträge: 9
Standard AW: Achsenwinkel bei 3D Minkowski Diagramm

Das heißt meine eigentliche Hauptfrage wäre noch ürbig:

Sind folgende Formeln zur Berechnung der Winkel in einem 4D-Minkowskidiagramm richtig?

Berechnung der ct-Achse:


Berechnung der x-Achse:


Berechnung der y-Achse:


Berechnung der z-Achse:
Mit Zitat antworten
  #6  
Alt 25.08.17, 19:17
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beiträge: 253
Standard AW: Achsenwinkel bei 3D Minkowski Diagramm

Zitat:
Zitat von mojorisin Beitrag anzeigen
Sind folgende Formeln zur Berechnung der Winkel in einem 4D-Minkowskidiagramm richtig?
Wofür soll nochmal genau das u_x, u_y und u_z stehen? Dieses Tripel suggeriert einen Boost in eine vorgebbare Richtung, was aber nicht mit Deinen Beschreibungen übereinstimmt

Wenn Du einen Boost in eine vorgebbare Richtung betrachten willst wird die Sache relativ kompliziert. Die zugehörige Lorentz-Transformation besteht dann aus einer räumlichen Drehung und einem Boost in die x-Richtung. Mit Hilfe dieser zusammengesetzten Transformation könnte man die Basisvektoren des gestrichenen Systems berechnen und daraus dann die Winkel zwischen den Achsen, allerdings wird das dann vergleichsweise unanschaulich.

Wenn Du bei dem einfachen Boost in x-Richtung bleibst, so hat die x'-Achse im 2D-Minkoswki-Diagramm (mit der x- und der t-Achse) die Steigung v/c und die t'-Achse die Steigung c/v. Meine Empfehlung wäre es bei diesem Boost zu bleiben und damit zu rechnen.
__________________
Freundliche Grüße, B.
Mit Zitat antworten
  #7  
Alt 25.08.17, 19:48
mojorisin mojorisin ist offline
Newbie
 
Registriert seit: 16.05.2016
Beiträge: 9
Standard AW: Achsenwinkel bei 3D Minkowski Diagramm

Zitat:
Zitat von Bernhard Beitrag anzeigen
Wofür soll nochmal genau das u_x, u_y und u_z stehen? Dieses Tripel suggeriert einen Boost in eine vorgebbare Richtung, was aber nicht mit Deinen Beschreibungen übereinstimmt
Die u_x, u_y und u_z stehen für die Richtungsvektoren. Wie z.B. würde dann das Minkwoski-Diagramm ausehen für eine rakte die sich mit folgender geschwindigkeit relativ zu mir bewegt:



Mir ist klar, dass ich in dem Fall, das Koordinatensystem auch in die Richtung des Geschwindigkeitsvektors legen kann und dann ein 2D-Diagramm daraus machen mit u = 0,56 c

Mir geht es aber darum ein Verständnis dafür zu bekommen wie man höherdimensionale Minkowski-Diagramme erstellen kann, für Fälle in denen man keine Reduzierung auf 2D mehr machen kann.
Mit Zitat antworten
  #8  
Alt 25.08.17, 21:36
Ich Ich ist offline
Moderator
 
Registriert seit: 18.12.2011
Beiträge: 1.354
Standard AW: Achsenwinkel bei 3D Minkowski Diagramm

Im Beispiel siehst du ja schon, dass die ux und uy-Steigungen 0,28 sein müssen und nicht 0,4. Ich muss bloß zugeben, dass ies mir gerade zu anstrengend ist, die korrekte Formel herzuleiten. Vielleicht hast du selbst eine Idee (es handelt sich um einen Gradienten in einem rotierten Koordinatensystem).
Mit Zitat antworten
  #9  
Alt 25.08.17, 22:47
Bernhard Bernhard ist offline
Moderator
 
Registriert seit: 14.06.2017
Beiträge: 253
Standard AW: Achsenwinkel bei 3D Minkowski Diagramm

Zitat:
Zitat von mojorisin Beitrag anzeigen
Wie z.B. würde dann das Minkwoski-Diagramm ausehen für eine rakte die sich mit folgender geschwindigkeit relativ zu mir bewegt:

Man braucht dazu vor allem eine passende Darstellung der zugehörigen Lorentz-Transformation. Man findet das beispielsweise hier: https://en.wikipedia.org/wiki/Lorent...ransformations . Leitet man den inversen Lorentz-Boost partiell nach t' ab, so erhält man die vier Komponenten des t'-Basisvektors und der zeigt in die Richtung der t'-Achse. Analog geht das mit x', y' und z'.

Damit kennt man die Lage aller vier Achsen des gestrichenen Systems in Bezug auf das ungestrichene System.
__________________
Freundliche Grüße, B.

Geändert von Bernhard (26.08.17 um 11:52 Uhr) Grund: Nicht weiter zitierte Formulierung geschönt.
Mit Zitat antworten
  #10  
Alt 26.08.17, 10:35
mojorisin mojorisin ist offline
Newbie
 
Registriert seit: 16.05.2016
Beiträge: 9
Standard AW: Achsenwinkel bei 3D Minkowski Diagramm

Danke euch beiden,

Mit dem

Zitat:
Zitat von Bernhard Beitrag anzeigen
Leitet man den inversen Lorentz-Boost partiell nach t' ab, so erhält man die vier Komponenten des t'-Basisvektors und der zeigt in die Richtung der t'-Achse. Analog geht das mit x', y' und z'.
hab ich nun auch das verstanden:

Zitat:
Zitat von Ich Beitrag anzeigen
Im Beispiel siehst du ja schon, dass die ux und uy-Steigungen 0,28 sein müssen und nicht 0,4. Ich muss bloß zugeben, dass ies mir gerade zu anstrengend ist, die korrekte Formel herzuleiten. Vielleicht hast du selbst eine Idee (es handelt sich um einen Gradienten in einem rotierten Koordinatensystem).
Mit Zitat antworten
Antwort

Lesezeichen

Themen-Optionen
Ansicht

Forumregeln
Es ist Ihnen nicht erlaubt, neue Themen zu verfassen.
Es ist Ihnen nicht erlaubt, auf Beiträge zu antworten.
Es ist Ihnen nicht erlaubt, Anhänge hochzuladen.
Es ist Ihnen nicht erlaubt, Ihre Beiträge zu bearbeiten.

BB-Code ist an.
Smileys sind an.
[IMG] Code ist an.
HTML-Code ist aus.

Gehe zu


Alle Zeitangaben in WEZ +1. Es ist jetzt 18:13 Uhr.


Powered by vBulletin® Version 3.8.8 (Deutsch)
Copyright ©2000 - 2017, vBulletin Solutions, Inc.
ScienceUp - Dr. Günter Sturm